首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   4篇
  国内免费   35篇
综合类   33篇
基础理论   7篇
污染及防治   10篇
  2020年   1篇
  2017年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有50条查询结果,搜索用时 343 毫秒
21.
研究了高锰酸盐复合剂(PPC)对腐殖酸氯化过程中三卤甲烷生成量及生成形态的影响.结果表明,高锰酸盐复合剂氧化增加了腐殖酸氯化过程中三卤甲烷生成量和水样的卤代活性,增加了腐殖酸氯化的反应速度,在PPC投加量为0.75mg·l~(-1)时,卤代活性由原来的18.1μg·mg~(-1)升至26.6μg·mg~(-1).Br~-的浓度对三卤甲烷生成量及生成形态影响较大,随着Br~-离子浓度增加,三卤甲烷生成量及溴代甲烷的相对含量升高.高锰酸盐复合剂氧化改变了水样加氯消毒时三卤甲烷的形态分布,降低了溴代甲烷在三卤甲烷中的含量.高锰酸盐复合剂与混凝工艺相结合时,可显著降低三卤甲烷的生成量,如高锰酸盐复合剂投量为1mg·l~(-1)时,可使THMs降低到26.3μg·l~(-1).  相似文献   
22.
颗粒物粒径和有机物分子量对超滤膜污染的影响   总被引:1,自引:0,他引:1  
采用不同孔径和截留分子量的膜对原水进行预过滤,研究不同粒径的颗粒物和不同分子量的有机物对膜污染的影响。结果表明,随着预过滤膜孔径或截留分子量的减小,原水中浊度、CODMn、DOC和UV254的去除率逐渐提高,超滤膜运行的跨膜压力(TMP)比直接过滤原水时降低;经孔径为1.2μm和0.45μm的膜预过滤后,超滤膜运行的TMP仍上升较快,而经过截留分子量为100 kDa及以下膜预过滤后,膜污染比较缓慢。对膜阻力构成分析的结果表明,随着预过滤膜孔径或截留分子量的减小,超滤膜运行过程中的表面饼层阻力逐渐减小,堵孔阻力也有明显降低,但预膜滤不能有效降低膜的吸附阻力。超滤膜表面的扫描电镜观察结果表明,经过截留分子量在100 kDa及以下的膜预过滤后,超滤膜表面比较干净,此时的膜过滤阻力主要来源于吸附和堵孔阻力。  相似文献   
23.
目前,用水和废水处理中滤池反冲洗计算公式,通用的主要有两种类型,即:速比系数式和阻力系数式,本文评述了它们的发展、现状和存在向题。 根据理论推导和实验研究,本文提出改进的石英砂和无烟煤滤层反冲洗计算公式。石英砂滤层的速比系数式为:无烟煤滤层的速比系数式为两种滤层的阻力系数式则统一为:这些改进式能够良好地符合不同来源的实验资料,用于计算可以得到比现在公式更加精确的结果。 实验是以我国常用滤料进行的,所得计算公式可以推荐取代借用的国外公式。  相似文献   
24.
针对石化废水中不同特征污染物,采用人工分离筛选去除COD和油工程菌6株、硝化工程菌10株(亚硝化细菌5株、硝化细菌5株)构建高效混合菌群,通过臭氧固定化生物活性炭滤池除污染效能中试研究表明,该系统深度处理石化难降解有机废水是可行的,能同时实现去除COD、油类、NH3-N等污染物的功效,对COD、油类、NH3-N和色度的平均去除率分别为73.0%、90.5%、81.2%和90%,相应的出水分别为33.2mg/L、0.4mg/L、4.5mg/L和10倍,各项指标均达到了国家循环冷却水的用水要求,它的推广应用必将带来显著的环境效益、社会效益和经济效益。  相似文献   
25.
K+对Fe(Ⅵ)生成的稳定促进作用和机理研究   总被引:1,自引:0,他引:1  
研究了在生成高铁酸盐反应过程中K 对Fe(Ⅵ)的稳定促进作用和机理.结果表明,当反应温度大于50℃时.K 比Na 更有利于高铁酸盐的生成.K 促进高铁酸盐溶液生成的最佳反应温度为65℃.在生成高铁酸盐反应过程中,增加K 浓度能提高高铁酸盐的产率,并且随着硝酸铁投加量的增加,K 影响显著.在硝酸铁投加量为85 g/L时,采用4.4 mol/L KOH制备的Fe(Ⅵ)浓度为0.05 mol/L;加入2 mol/L K 后,Fe(Ⅵ)浓度增加到0.15 mol/L.K 对高铁酸盐溶液生成浓度的影响在硝酸铁投加量大于75 g/L,反应温度低于55℃,CIO-浓度低于1.16 mol/L时较为显著.K 在一定程度上可替代部分碱度,降低OH-用量.在反应过程中K 能包裹在FeO24-周围,减少Fe3 与FeO24- 接触,从而减缓Fe3 对FeO24-的催化分解作用;同时K 能与FeO24-生成K2 FeO4)晶体沉淀析出,降低溶液中FeO24-浓度,Fe(Ⅵ)分解速率减缓,稳定性增加,Fe(Ⅵ)生成浓度增加.  相似文献   
26.
研究了在生成高铁酸盐反应过程中K+对Fe(Ⅵ)的稳定促进作用和机理.结果表明,当反应温度大于50℃时,K+比Na+更有利于高铁酸盐的生成.K+促进高铁酸盐溶液生成的最佳反应温度为65℃.在生成高铁酸盐反应过程中,增加K+浓度能提高高铁酸盐的产率,并且随着硝酸铁投加量的增加,K+影响显著.在硝酸铁投加量为85 g/L时,采用4.4 mol/L KOH制备的Fe(Ⅵ)浓度为0.05 mol/L;加入2 mol/L K+后,Fe(Ⅵ)浓度增加到0.15 mol/L.K+对高铁酸盐溶液生成浓度的影响在硝酸铁投加量大于75 g/L,反应温度低于55℃,ClO-浓度低于1.16 mol/L时较为显著.K+在一定程度上可替代部分碱度,降低OH-用量.在反应过程中K+能包裹在FeO2-4周围,减少Fe3+与FeO2-4接触,从而减缓Fe3+对FeO2-4的催化分解作用;同时K+能与FeO2-4生成K2FeO4晶体沉淀析出,降低溶液中FeO2-4浓度,Fe(Ⅵ)分解速率减缓,稳定性增加,Fe(Ⅵ)生成浓度增加.  相似文献   
27.
为了考察膜生物反应器(MBR)净化受污染地表水自然启动过程中功能菌群的成熟规律及碱度对MBR去除水中氨氮的影响,通过构建小试规模的MBR,考察了MBR处理受污染地表水的自然启动和稳定运行除污染特性。结果表明,MBR在自然启动过程中不会出现异养菌成熟的标志,系统对进水DOC、UV254和CODMn的平均去除率分别仅为(14.5±5.1)%、(12.6±5.6)%和(31.2±7.4)%,应考虑将其他工艺与MBR联用以提高系统的有机物去除能力。启动23天后,MBR中的亚硝化细菌成熟,NH3-N去除率达到80%以上;启动31 d后,MBR中的硝化细菌成熟,出水NO2--N稳定在0.05mg/L以下。碱度对MBR去除NH3-N效能影响较大,向进水中投加30 mg/L的NaHCO3能使MBR对NH3-N的去除率由(86.1±3.7)%提高至(98.0±1.6)%。在连续曝气、10 L/(m2.h)通量、每10 min反洗15 s运行模式下,MBR的膜污染较为严重,平均TMP增长速率为0.45 kPa/d,需进一步优化相关参数以实现MBR的长期稳定运行。  相似文献   
28.
利用流动电流、絮凝脉动颗粒检测技术、分子量分布及XAD树脂分类技术对高锰酸盐复合剂强化混凝去除水中天然有机物的机制进行了研究.结果表明,高锰酸盐复合剂提高了硫酸铝的混凝效果,投加0.75 mg/L高锰酸盐复合剂后,较单独投加硫酸铝对天然有机物的去除率可提高13个百分点.流动电流(SC)检测结果表明,高锰酸盐复合剂使有机物表面所带的负电性减弱,稳定性降低.如单独投加60 mg/L硫酸铝时SC值为55.2,而投加0.50、 0.75和1.0 mg/L的高锰酸盐复合剂预氧化处理后,SC值分别升高至61.4、 69.6和87.0.投加高锰酸盐复合剂后,絮凝指数增加,表明高锰酸盐复合剂及反应过程中生成的新生态水合二氧化锰对混凝起到了强化作用.分子质量分布及XAD树脂分类结果表明,高锰酸盐复合剂提高了混凝过程对小分子质量和亲水性有机物的去除能力,如硫酸铝混凝后亲水性有机物的含量为1.90 mg/L,而投加高锰酸盐复合剂后,可使其含量降至1.32 mg/L.  相似文献   
29.
30.
水合二氧化锰界面特性及其除污染效能   总被引:25,自引:2,他引:25  
研究了水合二氧化锰(δMnO2)的界面特性及其吸附性能.考察了δMnO2的比表面积、粒径分布、表面官能团及ζ电位;探讨了δMnO2对水中亚砷酸盐及腐殖酸的吸附去除效能.结果表明:δMnO2的比表面积为117.4m2·g-1,体积平均粒径为0.11μm;δMnO2表面具有丰富的表面羟基(Mn-OH);随着pH值由1.9升高至10.7,δMnO2的ζ电位由 22.7mV降低至53.5mV,其零电荷点在pH3.0附近.δMnO2对亚砷酸盐(As(III))及腐殖酸(HA)均表现出优良的吸附去除效能,其单位δMnO2质量的最大吸附量分别为137μgAs(III)·mg-1δMnO2和1.01mgTOC·mg-1δMnO2.亚砷酸盐与腐殖酸共存时,腐殖酸的存在使得亚砷酸盐的去除率下降10%—28%;而亚砷酸盐对腐殖酸的去除无明显影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号