首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
环保管理   2篇
综合类   1篇
污染及防治   28篇
评价与监测   5篇
  2016年   1篇
  2013年   8篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1987年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
21.
Thermal volatilization is explored as a means of inferring the chemical composition of atmospheric aerosol particles with diameters smaller than 10 nm (nanoparticles). Such particles contain too little mass for quantitative chemical determination by traditional analytical methods. Aerosols were subjected to increasing temperature in an oven and particle loss was measured as a function of temperature with the TSI model 3025 ultrafine condensation particle counter (UCPC), which is capable of counting particles with diameters as small as 3 nm. Particle nucleation was observed down stream of the oven when it was heated above about 400°C. To reduce this artifact, the sample air down stream of the oven was cooled to condense the hot gases and/or the freshly nucleated particles before they reached the UCPC. Controlled experiments were done with pure ammonium sulfate (NH4)2SO4 particles. The experimental design was optimized based on the known concentration of pure (NH4)2SO4 particles vaporized in the oven and the diffusion of this material to the walls of the sampling tube before the particle counter.  相似文献   
22.
A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   
23.
Aerosol carbon sampling methods and biases were evaluated during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) and Fresno Supersite programs. PM2.5 sampling was conducted using Desert Research Institute (DRI) sequential filter samplers (SFS) from December 1999 through February 2001 at two urban sites (Fresno and Bakersfield), one regional transport site (Angiola), and two boundary sites (Bethel Island and Sierra Nevada Foothills) during CRPAQS in the San Joaquin Valley (SJV). Additional filter-based sampling was done in Fresno as part of the US Environmental Protection Agency (EPA) Supersites program. Organic carbon (OC) and elemental carbon (EC) concentrations were higher during winter (December-February) than summer (June-August) and this trend was most pronounced at Fresno and Bakersfield. OC and EC displayed similar diurnal trends during winter and summer at Fresno and during winter at Angiola. The diurnal pattern at Angiola reflected the transport of secondary pollutants to the site. Collocated measurements of OC and EC on undenuded quartz-fiber filters were made at Fresno with the DRI SFS and the Andersen FRM and RAAS samplers. All average differences in OC between samplers were less than their respective measurement uncertainties. Positive and negative OC biases were evaluated at Fresno using the Andersen RAAS sampler with carbon-denuded and undenuded channels with Teflon-membrane and quartz-fiber filter pairs. Differences between the denuded particle OC and that obtained by subtracting the quartz-behind-Teflon or quartz-behind-quartz OC from the undenuded quartz-fiber front filter were less than twice their measurement uncertainties in most cases. Particulate OC in the denuded channel agreed most closely with the difference between undenuded front and backup quartz-fiber OC.  相似文献   
24.
The Interagency Monitoring of Protected Visual Environments (IMPROVE) equation used to assess compliance under the U.S. Environmental Protection Agency (EPA) Haze Rule assumes that dry mass scattering efficiencies for aerosol chemical components are constant. However, examination of aerosol size distributions and chemical composition during the Big Bend Regional Aerosol and Visibility Observational Study and the Southeastern Aerosol and Visibility Study suggests that volume and mass scattering efficiencies vary directly with increasing particle light scattering and aerosol mass concentration. This is consistent with the observation that particle distributions were shifted to larger sizes under more polluted conditions and appears to be related to aging of the aerosol during transport to remote locations.  相似文献   
25.
The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.  相似文献   
26.
Abstract

The hygroscopic properties of the organic fraction of aerosols are poorly understood. The ability of organic aerosols to absorb water as a function of relative humidity (RH) was examined using data collected during the 1999 Big Bend Regional Aerosol and Visibility Observational Study (BRAVO). (On average, organics accounted for 22% of fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) mass). Hourly RH exceeded 80% only 3.5% of the time and averaged 44%. BRAVO aerosol chemical composition and dry particle size distributions were used to estimate PM2.5 light scattering (Bsp) at low and high ambient RH. Liquid water growth associated with inorganic species was sufficient to account for measured Bsp for RH between 70 and 95%.  相似文献   
27.
Abstract

Evaporative loss of particulate matter (with aerodynamic diameter <2.5 μm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from <10% during cold months to >80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8–16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32–44% lower than actual PM2.5 at three California Central Valley locations.  相似文献   
28.
The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To alleviate problems due to selection of a backward-trajectory starting level within a large complex set of 3-dimensional winds, turbulence, and dispersion, results were averaged from all heights, which yielded uniform improvement against all individual cases.  相似文献   
29.
The greater Cairo area suffers from extreme levels of gas and particulate phase air pollutants. In order to reduce the levels of ambient pollution, the USAID and the Egyptian Environmental Affairs Agency (EEAA) have supported the Cairo Air Improvement Project (CAIP). As part of this project, two intensive ambient monitoring studies were carried out during the period of February 22 to March 4 and October 27 to November 27, 1999. Volatile organic compounds (VOCs) were measured on a 24-h basis at six sampling stations during each of the intensive periods. During the February/March study, samples were collected daily, while in the October/November study samples were collected every other day. The six intensive measurement sites represented background levels, mobile source impacts, industrial impacts, and residential exposure. High levels of NMHC were observed at all locations. NMHC concentrations ranged from 365 ppb C at Helwan to 1,848 ppb C at El Qualaly during winter, 1999 and from 461 ppb C at Kaha to 2,037 ppb C at El Qualaly during fall, 1999. El Qualaly, the site chosen to represent mobile emissions, displayed the highest average NMHC concentrations of any site, by a factor of 2 or more. The highest mobile source contributions were estimated at this site. The major contributors to NMHC at all sites were mobile emissions, lead smelting, and compressed natural gas.  相似文献   
30.
Aerosol size distributions are presented for a winter intensive study at the Fresno Supersite. The size distributions were consistent with and predictive for continuous PM2.5 measured by beta attenuation. They varied temporally with respect to source type and intensity, with the smallest mean diameters associated with high NOx concentrations during weekday morning rush hours. Conversely, small and large particle and black carbon (BC) concentrations were higher during Sunday and weekday evenings in response to traffic and residential wood combustion emissions. Ambient PM2.5 light scattering (Bsp) was precisely but systematically underestimated during winter, probably because of heating in the sample shelter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号