首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   7篇
  国内免费   8篇
安全科学   7篇
废物处理   21篇
环保管理   36篇
综合类   26篇
基础理论   49篇
污染及防治   74篇
评价与监测   44篇
社会与环境   23篇
灾害及防治   3篇
  2023年   5篇
  2022年   18篇
  2021年   15篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   12篇
  2016年   13篇
  2015年   7篇
  2014年   11篇
  2013年   40篇
  2012年   8篇
  2011年   21篇
  2010年   27篇
  2009年   6篇
  2008年   13篇
  2007年   8篇
  2006年   10篇
  2005年   10篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1973年   1篇
  1963年   3篇
  1962年   1篇
  1961年   1篇
  1955年   1篇
排序方式: 共有283条查询结果,搜索用时 265 毫秒
261.
Environmental Management - Community forestry (CF) is increasingly recognized as one of the key solutions to forest management and governance challenges in the developing world. At its heart is the...  相似文献   
262.
Novel bio-based green films were prepared using wheat protein isolate (WPI) by solution casting method using Propylene Glycol as a plasticizer for packaging applications. The effect of the plasticizer content (10, 15, 20 and 25 wt%) on mechanical properties (tensile strength, young’s modulus and  % of elongation) was investigated. A thermal degradation and phase transition of the prepared WPI was assessed by means of TGA and DSC analysis. The results showed that the tensile strength and young’s modulus decreased and  % of elongation increased with increasing PG content. The ATR-FTIR and SEM were used for structural characterization and morphology of the films, respectively. FTIR studies reveals that the intensity of the bands corresponding to the amide groups increases with increasing PG content tending to increase protein–PG interactions. Further, the glass transition temperature was decreased and the thermal stability of the WPI was found to be increased by plasticization. The overall thermal stability of the films was improved and is attributed to the increase in mobility of the polymer chains.  相似文献   
263.
Pant KP 《Ambio》2012,41(3):271-283
Biomass fuels are used by the majority of resource poor households in low-income countries. Though biomass fuels, such as dung-briquette and firewood are apparently cheaper than the modern fuels indoor pollution from burning biomass fuels incurs high health costs. But, the health costs of these conventional fuels, mostly being indirect, are poorly understood. To address this gap, this study develops probit regression models using survey data generated through interviews from households using either dung-briquette or biogas as the primary source of fuel for cooking. The study investigates factors affecting the use of dung-briquette, assesses its impact on human health, and estimates the associated household health costs. Analysis suggests significant effects of dung-briquette on asthma and eye diseases. Despite of the perception of it being a cheap fuel, the annual health cost per household due to burning dung-briquette (US16.94) is 61.3 (US 16.94) is 61.3% higher than the annual cost of biogas (US 10.38), an alternative cleaner fuel for rural households. For reducing the use of dung-briquette and its indirect health costs, the study recommends three interventions: (1) educate women and aboriginal people, in particular, and make them aware of the benefits of switching to biogas; (2) facilitate tree planting in communal as well as private lands; and (3) create rural employment and income generation opportunities.  相似文献   
264.
The Soil and Water Assessment Tool (SWAT) is widely used in the United States (U.S.) to simulate hydrology and water quality simulation. Process‐based models like SWAT require a great deal of data to accurately represent the natural world, including topography, land use, soils, weather, and management. With the exception of management, all these data are available nationally from multiple sources. To date, credible SWAT studies in the U.S. have assembled suitable management data (operation scheduling, fertilization application rates, and plant growth parameterization). In this research, we develop a national management database for SWAT using existing U.S. Department of Agriculture data sources. These data are compatible with existing SWAT interfaces and are relatively easy to use. Although management data from local sources is preferred, these data are not always available. This work is intended to fill this void with more reasonable management data than the existing defaults. This national database covers all major cultivated crops and should facilitate improved SWAT applications in the U.S. These data were tested in two case studies and found to produce satisfactory SWAT predictions. The database developed in this research is freely available on the web.  相似文献   
265.
Understanding crop responses to climate is essential to cope with anticipated changes in temperature and precipitation. We investigated the climate–crop yield relationship and the impact of historical climate on yields of rice, maize and wheat in the Koshi basin of Nepal. The results show significant impact of growing season temperature and precipitation on crop production in the region. Rice, maize and wheat cultivated at altitudes below 1,100, 1,350 and 1,700 m amsl (above mean sea level), respectively, suffer from stress due to higher temperatures particularly during flowering and yield formation stages. Responses of crop yields to a unitary increment in growing season mean temperature vary from ?6 to 16 %, ?4 to 11 % and ?12 to 3 % for rice, maize and wheat, respectively, depending on the location and elevation in the basin. In most parts of the basin, we observe warming trends in growing season mean temperatures of rice, maize and wheat over the last few decades with clear evidence of negative impacts on yields. However, at some high-elevation areas, positive impacts of warming are also observed on rice and maize yields. If the observed trends in temperature continue in future, the impact is likely to be mostly negative on crop production in the basin. However, crop production may gain from the warming at relatively higher altitudes provided other conditions, e.g., water availability, soil fertility, are favorable.  相似文献   
266.
Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m−2 d−1. Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m−3, but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m−3, remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S1 and semi-diurnal S2 periodic components. At the advection-dominated points, radon concentration did not exhibit S1 or S2 components. At the reference points, however, the S2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle.  相似文献   
267.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of unmodified bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were subjected to X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), mechanical characterization and scanning electron microscope (SEM). Significant changes in the tensile properties were observed depending on the different chemical constituents of the films. The presence of clay and crosslinking with epichlorohydrin were both found to have considerable effect on the morphology and mechanical property of the films. The SEM investigations, XRD analysis and FTIR studies revealed the interaction between the various chemical components of the films.  相似文献   
268.
River water quality was evaluated with respect to eutrophication and land use during spring snowmelt and summer base flow periods in Abashiri (mixed cropland-livestock farming) and Okoppe (grassland-based dairy cattle farming), eastern Hokkaido, Japan. Water from rivers and tributaries was sampled during snowmelt and summer base flow periods in 2005, and river flow was measured. Total N (TN), NO3–N, and Si concentrations were determined using standard methods. Total catchment and upland areas for each sampling site were determined with ArcGIS hydrology modeling software and 1:25,000-scale digital topographic maps. Specific discharge was significantly higher during snowmelt than during base flow. In both areas, TN concentrations increased, whereas Si concentrations decreased, with increased specific discharge, and were significantly higher during snowmelt. The Si:TN mole ratio decreased to below or close to the threshold value for eutrophication (2.7) in one-third of sites during snowmelt. River NO3–N concentrations during base flow were significantly and positively correlated with the proportion of upland fields in the catchment in both the Abashiri (r = 0.88, P < 0.001) and Okoppe (r = 0.43, P < 0.01) areas. However, the regression slope, defined as the impact factor (IF) of water quality, was much higher in Abashiri (0.025) than in Okoppe (0.0094). The correlations were also significantly positive during snowmelt in both areas, but IF was four to eight times higher during snowmelt than during base flow. Higher discharge of N from upland fields and grasslands during snowmelt and the resulting eutrophication in estuaries suggest that nutrient discharge during snowmelt should be taken into account when assessing and monitoring the annual loss of nutrients from agricultural fields.  相似文献   
269.
The oxides of nitrogen—NO x (NO and NO2)—are an important constituent of the troposphere. The availability of relatively higher spatial (0.25° grid) and temporal (daily) resolution data from ozone monitoring instrument (OMI) onboard Aura helps us to better differentiate between the point sources such as thermal power plants from large cities and rural areas compared to previous sensors. The annual and seasonal (summer and winter) distributions shows very high mean tropospheric NO2 in specific pockets over India especially over the Indo-Gangetic plains (up to 14.2 × 1015 molecules/cm2). These pockets correspond with the known locations of major thermal power plants. The tropospheric NO2 over India show a large seasonal variability that is also observed in the ground NO2 data. The multiple regression analysis show that the influence of a unit of power plant (in gigawatts) over tropospheric NO2 (×1015 molecules/cm2) is around ten times compared to a unit of population (in millions) over India. The OMI data show that the NO2 increases by 0.794 ± 0.12 (×1015 molecules/cm2; annual) per GW compared to a previous estimate of 0.014 (×1015 molecules/cm2) over India. The increase of tropospheric NO2 per gigawatt is found to be 1.088 ± 0.18, 0.898 ± 0.14, and 0.395 ± 0.13 (×1015 molecules/cm2) during winter, summer, and monsoon seasons, respectively. The strong seasonal variation is attributed to the enhancement or suppression of NO2 due to various controlling factors which is discussed here. The recent increasing trend (2005–2007) over rural thermal power plants pockets like Agori and Korba is due to recent large capacity additions in these regions.  相似文献   
270.
A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号