首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24260篇
  免费   152篇
  国内免费   115篇
安全科学   373篇
废物处理   1196篇
环保管理   3358篇
综合类   4285篇
基础理论   6608篇
环境理论   7篇
污染及防治   5114篇
评价与监测   1659篇
社会与环境   1860篇
灾害及防治   67篇
  2018年   1709篇
  2017年   1614篇
  2016年   1439篇
  2015年   291篇
  2014年   218篇
  2013年   985篇
  2012年   805篇
  2011年   1875篇
  2010年   1143篇
  2009年   1093篇
  2008年   1465篇
  2007年   1908篇
  2006年   460篇
  2005年   436篇
  2004年   405篇
  2003年   532篇
  2002年   515篇
  2001年   492篇
  2000年   348篇
  1999年   226篇
  1998年   184篇
  1997年   155篇
  1996年   183篇
  1995年   181篇
  1994年   213篇
  1993年   185篇
  1992年   187篇
  1991年   185篇
  1990年   216篇
  1989年   198篇
  1988年   170篇
  1987年   165篇
  1986年   150篇
  1985年   168篇
  1984年   171篇
  1983年   170篇
  1982年   164篇
  1981年   163篇
  1980年   149篇
  1979年   150篇
  1978年   147篇
  1977年   133篇
  1976年   136篇
  1975年   114篇
  1974年   142篇
  1973年   126篇
  1972年   125篇
  1971年   105篇
  1970年   106篇
  1967年   116篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
To determine if ozone (O3) and root zone temperature (RZT) affect plant biomass allocation and photosynthesis, radish (Raphanus sativus) plants were grown in controlled environment laboratory chambers in one of four treatments: episodic O3 (average delivery 0.063 mumol mol-1) with RZT at 13 degrees C, episodic O3 (same delivery) with RZT at 18 degrees C, charcoal-filtered air with RZT at 13 degrees C and charcoal-filtered air with RZT at 18 degrees C. O3 reduced total biomass and shoot biomass of radish at 13 degrees C RZT but had no effect at 18 degrees C RZT. Low (13 degrees C) RZT decreased total biomass in both O3 and charcoal-filtered air. RZT had no overall effect on biomass allocation, but O3 lowered root-to-shoot ratios for plants grown at 18 degrees C RZT. Photosynthesis was reduced for plants grown at 18 degrees C RZT and O3, but stomatal conductance was not affected by O3 nor RZT. These results indicate that O3 and low RZT decrease biomass, but that plant photosynthesis is decreased by O3 and warm RZT.  相似文献   
992.
The diversity of naturally produced organohalogens   总被引:11,自引:0,他引:11  
Gribble GW 《Chemosphere》2003,52(2):289-297
More than 3800 organohalogen compounds, mainly containing chlorine or bromine but a few with iodine and fluorine, are produced by living organisms or are formed during natural abiogenic processes, such as volcanoes, forest fires, and other geothermal processes. The oceans are the single largest source of biogenic organohalogens, which are biosynthesized by myriad seaweeds, sponges, corals, tunicates, bacteria, and other marine life. Terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and even humans also account for a diverse collection of organohalogens.  相似文献   
993.
Paerl HW  Steppe TF  Buchan KC  Potts M 《Ambio》2003,32(2):87-90
The Atlantic hurricanes of 1999 caused widespread environmental damage throughout the Caribbean and US mid-Atlantic coastal regions. However, these storms also proved beneficial to certain microbial habitats; specifically, cyanobacteria-dominated mats. Modern mats represent the oldest known biological communities on earth, stromatolites. Contemporary mats are dominant biological communities in the hypersaline Bahamian lakes along the Atlantic hurricane track. We examined the impacts of varying levels of hypersalinity on 2 processes controlling mat growth, photosynthesis and nitrogen fixation, in Salt Pond, San Salvador Island, Bahamas. Hypersalinity (> 5 times seawater salinity) proved highly inhibitory to these processes. Freshwater input from Hurricane Floyd and other large storms alleviated this salt-inhibition. A predicted 10 to 40 year increase in Atlantic hurricane activity accompanied by more frequent "freshening" events will enhance mat productivity, CO2 sequestration and nutrient cycling. Cyanobacterial mats are sensitive short- and long-term indicators of climatic and ecological changes impacting these and other waterstressed environments.  相似文献   
994.
236U (t(1/2)=2.3 x 10(7) y) is formed as a result of thermal neutron capture by (235)U. In naturally occurring U ores, where a high neutron flux is present from spontaneous fission of (238)U, (236)U/(238)U atom ratios are approximately 10(-4) ppm. In the natural Earth's crust, unaffected by nuclear fallout, these ratios are expected to be on the order of 10(-8) ppm. Reactor-irradiated U, however, exhibits high (236)U/(238)U atom ratios approaching 10(4) ppm. As a result, the presence of very small quantities of reactor-irradiated U will significantly enhance the "background" (236)U/(238)U atom ratio. When sufficiently elevated (236)U/(238)U ratios are present, the determination of (236)U/(238)U by rapid inductively coupled plasma mass spectrometric (ICPMS) methods is attractive. We have used sector ICPMS at medium resolving power (R=3440) to measure (236)U/(238)U atom ratios with a determination limit of 0.2 ppm. The limiting factors in the measurement are the (235)U(1)H(+) isobar and background signal at m/z 236 arising from the (238)U(+) peak tail. Based upon the analysis of replicates and considerations of possible systematic errors, uncertainties of +/-5% are found for (236)U/(238)U atom ratios of 1-100 ppm. This procedure has been demonstrated in studies of anthropogenic (236)U in the environment at three locations: (a) offsite soils from the vicinity of the Rocky Flats Environmental Technology site (Golden, Colorado, USA); (b) sediments from the Ashtabula River (Ohio, USA); and (c) sediments from the Mersey estuary (Liverpool, UK). In each of these three locations, definite plumes of elevated (236)U/(238)U are identified and characterized. Maximum (236)U/(238)U atom ratios observed in RFETS-vicinity soils, the Ashtabula River, and the Mersey Estuary are 2.8, 140, and 4.4 ppm, respectively.  相似文献   
995.
The photodegradation kinetics of atrazine (2-chloro-6-(ethylamino)-4-isopropylamino-1,3,5-triazine) and ametryne (2-methylthio-4-ethylamino-6-isopropylamino-s-triazine), in fresh and coastal salt water from Barbados, were measured under irradiation with artificial solar and UV254-radiation. The first-order rate constants were greater for ametryne than for atrazine, and the rates were reduced in seawater relative to fresh water, and in soil slurries relative to fresh water. However, rates were accelerated in the presence of iron(III) at pH 3 due to photo-Fenton type processes. This rate enhancement was reduced at ambient pH values (pH 7-7.5) representative of surface water in Barbados. These results have important implications for the relative persistence of these contaminants in aquatic environments in tropical areas.  相似文献   
996.
The respective speciation of aluminium in sewage effluent and in river water receiving effluent, has been examined. Results showed that concentrations of reactive aluminium changed over a timescale of hours and were controlled predominantly by pH. A minimum concentration of reactive aluminium occurred at a pH of approximately 6.8, coinciding with the prevalence of non-reactive, insoluble Al(OH)3 species. For receiving waters of low pH value, typically < pH 5, a large proportion of the 'naturally present' aluminium can be present in a reactive form at concentrations higher than the proposed Environmental Quality Standard (EQS). Mixing of waters of this type with effluent of a higher pH value leads to the precipitation of aluminium hydroxide. Mixing of effluent of pH value in the range 7.5-8.0 with river water in the same (or slightly higher) pH range appears to result in no appreciable change in the proportion of reactive aluminium; the change in concentration tends to be related simply to dilution. On the basis of a theoretical knowledge of aluminium speciation, results obtained in this work indicate that it is possible to make predictions about the proportion of reactive aluminium present in a receiving water, based on the pH values of the effluent water mixture and the concentration in the effluent. Reasonable comparisons between measured and predicted values were obtained at higher pH values, but the relationship was less certain at pH values less than 6.5 for which levels of reactive metal tended to be higher than the quality standard value.  相似文献   
997.
Natural-abundance delta15N showed that nitrate generated from commercial land application of swine (Sus scrofa domesticus) waste within a North Carolina Coastal Plain catchment was being discharged to surface waters by ground water passing beneath the sprayfields and adjacent riparian buffers. This was significant because intensive swine farms in North Carolina are considered non-discharge operations, and riparian buffers with minimum widths of 7.6 m (25 ft) are the primary regulatory control on ground water export of nitrate from these operations. This study shows that such buffers are not always adequate to prevent discharge of concentrated nitrate in ground water from commercial swine farms in the Mid-Atlantic Coastal Plain, and that additional measures are required to ensure non-discharge conditions. The median delta15N-total N of liquids in site swine waste lagoons was +15.4 +/- 0.2% vs. atmospheric nitrogen. The median delta15N-NO3 values of shallow ground water beneath and adjacent to site sprayfields, a stream draining sprayfields, and waters up to 1.5 km downstream were + 15.3 +/- 0.2 to + 15.4 +/- 0.2%. Seasonal and spatial isotopic variations in lagoons and well waters were greatly homogenized during ground water transport and discharge to streams. Neither denitrification nor losses of ammonia during spraying significantly altered the bulk ground water delta15N signal being delivered to streams. The lagoons were sources of chloride and potassium enrichment, and shallow ground water showed strong correlation between nitrate N, potassium, and chloride. The 15N-enriched nitrate in ground water beneath swine waste sprayfields can thus be successfully traced during transport and discharge into nearby surface waters.  相似文献   
998.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,4,3-benzodioxathiepin 3-oxide), a pesticide that is highly toxic to aquatic organisms, is widely used in the cotton (Gossypium hirsutum L.) industry in Australia and is a risk to the downstream riverine environment. We used the GLEAMS model to evaluate the effectiveness of a range of management scenarios aimed at minimizing endosulfan transport in runoff at the field scale. The field management scenarios simulated were (i) Conventional, bare soil at the beginning of the cotton season and seven irrigations per season; (ii) Improved Irrigation, irrigation amounts reduced and frequency increased to reduce runoff from excess irrigation; (iii) Dryland, no irrigation; (iv) Stubble Retained, increased soil cover created by retaining residue from the previous crop or a specially planted winter cover crop; and (v) Reduced Sprays, a fewer number of sprays. Stubble Retained was the most effective scenario for minimizing endosulfan transport because infiltration was increased and erosion reduced, and the stubble intercepted and neutralized a proportion of the applied endosulfan. Reducing excess irrigation reduced annual export rates by 80 to 90%, but transport in larger storm events was still high. Reducing the number of pesticide applications only reduced transport when three or fewer sprays were applied. We conclude that endosulfan transport from cotton farms can be minimized with a combination of field management practices that reduce excess irrigation and concentration of pesticide on the soil at any point in time; however, discharges, probably with endosulfan concentrations exceeding guideline values, will still occur in storm events.  相似文献   
999.
To reduce endosulfan (C9H6O3Cl6S; 6,7,8,9,10,10-hexachloro-1,5, 5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) contamination in rivers and waterways, it is important to know the relative significances of airborne transport pathways (including spray drift, vapor transport, and dust transport) and waterborne transport pathways (including overland and stream runoff). This work uses an integrated modeling approach to assess the absolute and relative contributions of these pathways to riverine endosulfan concentrations. The modeling framework involves two parts: a set of simple models for each transport pathway, and a model for the physical and chemical processes acting on endosulfan in river water. An averaging process is used to calculate the effects of transport pathways at the regional scale. The results show that spray drift, vapor transport, and runoff are all significant pathways. Dust transport is found to be insignificant. Spray drift and vapor transport both contribute low-level but nearly continuous inputs to the riverine endosulfan load during spraying season in a large cotton (Gossypium hirsutum L.)-growing area, whereas runoff provides occasional but higher inputs. These findings are supported by broad agreement between model predictions and observed typical riverine endosulfan concentrations in two rivers.  相似文献   
1000.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] have been found with increasing occurrence in rivers and streams. Their continued use will require changes in agricultural practices. We compared water quality from four crop-tillage treatments: (i) conventional moldboard plow (MB), (ii) MB with ryegrass (Lolium multiflorum Lam.) intercrop (IC), (iii) soil saver (SS), and (iv) SS + IC; and two drainage control treatments, drained (D) and controlled drainage-subirrigation (CDS). Atrazine (1.1 kg a.i. ha-1), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one] (0.5 kg a.i. ha-1), and metolachlor (1.68 kg a.i. ha-1) were applied preemergence in a band over seeded corn (Zea mays L.) rows. Herbicide concentration and losses were monitored from 1992 to spring 1995. Annual herbicide losses ranged from < 0.3 to 2.7% of application. Crop-tillage treatment influenced herbicide loss in 1992 but not in 1993 or 1994, whereas CDS affected partitioning of losses in most years. In 1992, SS + IC reduced herbicide loss in tile drains and surface runoff by 46 to 49% compared with MB. The intercrop reduced surface runoff, which reduced herbicide transport. Controlled drainage-subirrigation increased herbicide loss in surface runoff but decreased loss through tile drainage so that total herbicide loss did not differ between drainage treatments. Desethyl atrazine [6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine] comprised 7 to 39% of the total triazine loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号