首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1359篇
  免费   24篇
  国内免费   3篇
安全科学   47篇
废物处理   53篇
环保管理   279篇
综合类   124篇
基础理论   392篇
环境理论   1篇
污染及防治   326篇
评价与监测   83篇
社会与环境   70篇
灾害及防治   11篇
  2022年   7篇
  2021年   10篇
  2020年   16篇
  2019年   12篇
  2018年   25篇
  2017年   12篇
  2016年   44篇
  2015年   30篇
  2014年   34篇
  2013年   125篇
  2012年   35篇
  2011年   67篇
  2010年   48篇
  2009年   60篇
  2008年   56篇
  2007年   71篇
  2006年   57篇
  2005年   52篇
  2004年   40篇
  2003年   44篇
  2002年   45篇
  2001年   39篇
  2000年   27篇
  1999年   26篇
  1998年   18篇
  1997年   20篇
  1996年   20篇
  1995年   34篇
  1994年   19篇
  1993年   20篇
  1992年   13篇
  1991年   25篇
  1990年   19篇
  1989年   15篇
  1988年   9篇
  1987年   16篇
  1986年   15篇
  1985年   11篇
  1984年   25篇
  1983年   10篇
  1982年   14篇
  1981年   9篇
  1980年   9篇
  1979年   9篇
  1978年   6篇
  1977年   12篇
  1975年   9篇
  1974年   8篇
  1973年   5篇
  1971年   7篇
排序方式: 共有1386条查询结果,搜索用时 31 毫秒
151.
152.
153.
Mixtures of dense non-aqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. In general, the components of higher solubility are removed more quickly, thus altering the composition of the remaining DNAPL, and possibly leading to changes in its physical properties. Through the development of a simple compositional model, Roy et al. [J. Contam. Hydrol. 2002 (59) 163] showed that preferential dissolution of a mixed DNAPL could potentially result in changes in density and interfacial tension that could subsequently lead to remobilization of an initially static DNAPL pool. The laboratory experiments presented in this next paper provide a proof-of-concept for the previously presented theory, demonstrating and quantifying this process of remobilization. In addition, the experiments provide a data set for evaluation of the model presented by Roy et al. [J. Contam. Hydrol. 2002 (59) 163]. In the four experiments, a DNAPL pool comprised of tetrachloroethene and benzene was created as an open pool overlying glass beads within a water-saturated 2-D flow box. Experiments included rectangular and triangular pools. In each of the experiments, remobilization (as breakthrough) was observed more than 2 weeks after formation of the initial pool. During each experiment, the pool height declined as mass was lost by dissolution, while sampling indicated a decrease in the mole fraction of benzene, the more soluble component. Small protuberances formed along the bottom of the pool as its composition changed with time and the displacement pressure was achieved for various pore throats. Eventually one of the protuberances extended further, forming a finger (breakthrough). In general, the pool emptied as the finger proceeded further into the beads. It was also shown theoretically and experimentally that remobilization will occur sooner for pools with a triangular (pointing down), rather than rectangular, shape. The experimental results were simulated using the model developed by Roy et al. [J. Contam. Hydrol. 2002 (59) 163]. The model matched the observations well, suggesting that it accurately represents the primary mechanisms involved with natural remobilization under the conditions of the study.  相似文献   
154.
155.
Eutrophication of freshwater and coastal marine ecosystems a global problem   总被引:27,自引:2,他引:27  
GOAL, SCOPE AND BACKGROUND: Humans now strongly influence almost every major aquatic ecosystem, and their activities have dramatically altered the fluxes of growth-limiting nutrients from the landscape to receiving waters. Unfortunately, these nutrient inputs have had profound negative effects upon the quality of surface waters worldwide. This review examines how eutrophication influences the biomass and species composition of algae in both freshwater and costal marine systems. MAIN FEATURES: An overview of recent advances in algae-related eutrophication research is presented. In freshwater systems, a summary is presented for lakes and reservoirs; streams and rivers; and wetlands. A brief summary is also presented for estuarine and coastal marine ecosystems. RESULTS: Eutrophication causes predictable increases in the biomass of algae in lakes and reservoirs; streams and rivers; wetlands; and coastal marine ecosystems. As in lakes, the response of suspended algae in large rivers to changes in nutrient loading may be hysteretic in some cases. The inhibitory effects of high concentrations of inorganic suspended solids on algal growth, which can be very evident in many reservoirs receiving high inputs of suspended soils, also potentially may occur in turbid rivers. Consistent and predictable eutrophication-caused increases in cyanobacterial dominance of phytoplankton have been reported worldwide for natural lakes, and similar trends are reported here both for phytoplankton in turbid reservoirs, and for suspended algae in a large river CONCLUSIONS: A remarkable unity is evident in the global response of algal biomass to nitrogen and phosphorus availability in lakes and reservoirs; wetlands; streams and rivers; and coastal marine waters. The species composition of algal communities inhabiting the water column appears to respond similarly to nutrient loading, whether in lakes, reservoirs, or rivers. As is true of freshwater ecosystems, the recent literature suggests that coastal marine ecosystems will respond positively to nutrient loading control efforts. RECOMMENDATIONS AND OUTLOOK: Our understanding of freshwater eutrophication and its effects on algal-related water quality is strong and is advancing rapidly. However, our understanding of the effects of eutrophication on estuarine and coastal marine ecosystems is much more limited, and this gap represents an important future research need. Although coastal systems can be hydrologically complex, the biomass of marine phytoplankton nonetheless appears to respond sensitively and predictably to changes in the external supplies of nitrogen and phosphorus. These responses suggest that efforts to manage nutrient inputs to the seas will result in significant improvements in coastal zone water quality. Additional new efforts should be made to develop models that quantitatively link ecosystem-level responses to nutrient loading in both freshwater and marine systems.  相似文献   
156.
Fowler D  Muller J  Smith RI  Cape JN  Erisman JW 《Ambio》2005,34(1):41-46
The relationship between emissions and deposition of air pollutants, both spatially and in time forms an important focus for science and for policy makers. In practice, this relationship may become nonlinear if the underlying processes change with time, or in space. Nonlinearities may also appear due to errors in emission or deposition data, and careful scrutiny of both data sources and their relationship provides a means of picking up such deficiencies. Nonlinearities in source receptor relationships for sulfur and nitrogen compounds in Europe have been identified in measurement data for the UK. In the case of sulfur, the dry deposition process has been shown to be strongly influenced by ambient concentrations of NH3, leading to substantial increases in deposition rate as SO2 concentrations decline and the ratio SO2/NH3 decreases. The field evidence extends to measurements over three different surfaces in three countries across Europe. A mechanistic understanding of the cause of this nonlinearity has been provided. Apparent nonlinearities also exist in the sulfur deposition field through the influence of shipping emissions. The effect is clear at west coast locations, where during a period in which land-based sulfur emissions declined by 50%, no significant decline in concentrations of SO(2-) in precipitation were observed. The sites affected are primarily the coastal regions of southwestern UK, where shipping sources contribute a substantial fraction of the deposited sulfur, but the effect is not detectable elsewhere. Full quantification of the spatially disaggregated emission and their changes in time will eliminate this apparent nonlinearity in the source-receptor data. For oxidized nitrogen emission and deposition in the UK, there is strong evidence of nonlinearity in the source-receptor relationship. The concentrations and deposition of NO(3-) in precipitation have declined little following a reduction in emissions of 45% during the period 1987 to 2001. The data imply a significant decrease in the average transport distance for oxidized nitrogen and most probably an increase in the average oxidation rate. However, the net effect of changes in aerosol chemistry due to changes in sulfur emissions and less competition for the main oxidants as a consequence of reductions in sulfur emission have not been separated. A quantitative explanation of the cause of this nonlinearity is lacking and the effects are therefore identified as an important uncertainty for the development of further protocols to control acidification, eutrophication and photochemical oxidants in Europe.  相似文献   
157.
158.
The sorption of radionuclides on natural colloids may significantly modify their transport behaviour through fractured media, since radionuclides bound to colloids may not be subject to the important retardation mechanisms of matrix diffusion and sorption onto pore surfaces. This paper reports on theoretical and experimental work aimed at assessing the relevance of colloid-facilitated transport to repository safety analyses, with specific reference to the Swiss case. Transport models are presented, developed in conjunction with field- and laboratory-based studies of deep groundwater in the crystalline basement of northern Switzerland, in which colloid size distributions, compositions and sorption properties have been measured. Various potential mechanisms giving rise to both reversible and irreversible sorption are discussed. In the first case, a simple approach is examined which is based on previously reported models of colloid transport and assumes reversible, linear sorption on colloids, for which experimental data have been obtained. It is shown that transport of radionuclides would not, in general, be significantly enhanced because of this process. A more recently developed and more complex model is then described incorporating irreversible sorption, in which case the transport of radionuclides tends to be strongly dependent on the extent of colloid-fracture wall interaction.  相似文献   
159.
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.  相似文献   
160.
Biofiltration is an economical air pollution control (APC) technology, particularly suitable for the treatment of air-streams having high flow rates and low concentrations of volatile organic compounds (VOCs). This technology utilizes enzymatic catalysis at ambient conditions to mineralize such pollutants to CO2, H2O, and salts. A pilot-scale study conducted for more than 4 years investigated the development of a new biofiltration technology employing trickle bed air biofilters (TBABs). Following the completion of this experimental study, additional data analysis was performed to develop a simple lumped-parameter biofilter model, assuming first-order kinetics. This model related the observed biofilter performance to the principle independent physical, thermodynamic, and biochemical parameters. The initial model has subsequently been expanded to incorporate Monod kinetics. In this paper, the development and use of the final explicit lumped-parameter biofilter model and design equation, incorporating Monod kinetics, are presented. To facilitate the application of this model, practical procedures are also presented for the determination of VOC solubility, VOC biokinetic Monod parameters, and the maximum practical biofilter inlet VOC concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号