首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 956 毫秒
1.
A global three-dimensional Lagrangian chemistry-transport model STOCHEM is used to describe the European regional acid deposition and ozone air quality impacts along the Atlantic Ocean seaboard of Europe, from the SO2, NOx, VOCs and CO emissions from international shipping under conditions appropriate to the year 2000. Model-derived total sulfur deposition from international shipping reaches over 200 mg S m(-2) yr(-1) over the southwestern approaches to the British Isles and Brittany. The contribution from international shipping to surface ozone concentrations during the summertime, peaks at about 6 ppb over Ireland, Brittany and Portugal. Shipping emissions act as an external influence on acid deposition and ozone air quality within Europe and may require control actions in the future if strict deposition and air quality targets are to be met.  相似文献   

2.
In the vicinity of a large ammonia emission area, dry and wet deposition of acidifying and eutrophying compounds onto Douglas Fir forests was studied by sampling throughfall, stemflow and bulk precipitation. Deposition amounts of NH(4)(+) and SO(4)(2-) were recognised to be among the highest of Central Europe, resulting in extremely high inputs of (potential) acid to the forest soils (13.1 kEq ha(-1) year(-1)). The contribution of NH(3) emissions from agriculture to the total acid deposition to the forests was 52%. The total nitrogen deposition amounted to 115.0 kg ha(-1) year(-1), 83% originating from NH(3) emissions and 17% from NO(x) emissions. Calculated mean dry deposition velocities of NH(3) and SO(2) were much larger than reported in the literature. A synergistic effect between NH(3) and SO(2) in the process of dry deposition is suggested and evidence for this effect is discussed. When deposition models do not take this interaction into account, they will underestimate NH(3) and SO(2) deposition amounts in areas with intensive animal husbandry.  相似文献   

3.
Emissions of a precursor of acidity in precipitation, sulphur dioxide (SO2), declined in the UK and the EU (15) by 71% and 72%, respectively, between 1986 and 2001, while nitrous oxide emissions declined by about 40%. Acidity in UK precipitation and the deposition of sulphate in precipitation halved during this period, but reductions were larger in the English Midlands than at the west coast and in high rainfall areas (>2000 mm). There is evidence that the smaller reductions in sulphur deposition in the west and south are due in part to shipping sources of SO2. Reductions in sulphur dry deposition (74%) are larger than in wet deposition (45%), due to changes in the canopy resistance to dry deposition. For reduced nitrogen, there has been a small (10%) reduction in emissions and deposition, while for oxidized nitrogen, a substantial reduction in emissions (40%) occurred but wet deposition of nitrate changed by less than 10%.  相似文献   

4.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

5.
A statistical Lagrangian atmospheric transport model was used to generate annual maps of deposition of sulphur and oxidised and reduced nitrogen for the UK at a 5×5 km2 resolution. The model was run using emissions for the year 2002. The model was compared with measurements of gas concentrations (SO2, NOx, HNO3 and NH3) and of wet deposition and aerosol concentrations of SO42−, NO3 and NH4+ from national monitoring networks. Good correlation was obtained, demonstrating that the model is capable of accurately estimating the mass balance and spatial distribution of sulphur and nitrogen compounds in the atmosphere. A future emissions scenario for the year 2020 was used to test the influence of shipping emissions on sulphur deposition in the UK. The results show that, if shipping emissions are assumed to increase at a rate of 2.5% per year, their relative contribution to sulphur deposition is expected to increase from 9% to 28% between 2002 and 2020. The model was compared to both a European scale and a global scale chemical transport model and found to give broad agreement with the magnitude and location of sulphur deposition associated with shipping emissions. Enforcement of the MARPOL convention to reduce the sulphur content in marine fuel to 1% was estimated to result in a 6% reduction in total sulphur deposition to the UK for the year 2020. The percentage area of sensitive habitats with exceedance of critical loads for acidity in the UK was predicted to decrease by 1% with the implementation of the MARPOL convention.  相似文献   

6.
A local ammonia (NH3) inventory for a 5x5 km area in central England was developed, to investigate the variability of emissions, deposition and impacts of NH3 at a field scale, as well as to assess the validity of the UK 5-km grid inventory. Input data were available for the study area for 1993 and 1996 on a field by field basis, allowing NH3 emissions to be calculated for each individual field, separately for livestock grazing, livestock housing and manure storage, landspreading of manures and fertiliser N application to crops and grassland. An existing atmospheric transport model was modified and applied to model air concentrations and deposition of NH3 at a fine spatial resolution (50 m grid). From the mapped deposition estimates and land cover information, critical loads and exceedances were derived. to study the implications of local variability for regional NH3 impacts assessments. The results show that the most extreme local variability in NH3 emissions, deposition and impacts is linked to housing and storage losses. However, landspreading of manures and intensive cattle grazing are other important area sources, which vary substantially in the landscape. Overall, the range of predicted emissions from agricultural land within the study area is 0-2000 kg N ha(-1) year(-1) in 1993 and 0-8000 kg N ha(-1) year(-1) in 1996, respectively, with the peak at a poultry farm located in the study area. On average, the estimated field level NH3 emissions over the study area closely match the emission for the equivalent 5-km grid square in the national inventory for 1996. Deposition and expected impacts are highly spatially variable, with the edges of woodland and small "islands" of semi-natural vegetation in intensive agricultural areas being most at risk from enhanced deposition. Conversely the centres of larger nature reserves receive less deposition than average. As a consequence of this local variability it is concluded that national assessments at the 5 km grid level underestimate the occurrence of critical loads exceedances due to NH3 in agricultural landscapes.  相似文献   

7.
Emissions of sulfur trioxide from coal-fired power plants   总被引:1,自引:0,他引:1  
Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.  相似文献   

8.
Since 1994 the nickel-processing plant at the Cu-Ni smelter at Harjavalta, south-west Finland, has emitted considerable amounts of NH(3) into the atmosphere. The effects of NH(3) emissions on nitrogen and sulphur deposition in throughfall and the foliar nutrient status were investigated in a Scots pine stand at 0.5 km distance. Bulk deposition, stand throughfall and percolation water (20 cm depth) samples were collected at 4-week intervals during 1992-1998. pH and the Ca, Mg, K, NH(4) and SO(4) concentrations were determined on the samples. NH(3) emissions have strongly increased the scavenging of SO(2) from the air in the pine stand, and the increased levels of N and S deposition were clearly evident as increased foliar N and S concentrations and larger needle size. The increased input of SO(4) into the forest floor was not associated with an increase in the leaching of Ca and Mg from the surface soil layers.  相似文献   

9.
Releases of ammonia (NH3) to the atmosphere contribute significantly to the deposition of nitrogen to both terrestrial and aquatic ecosystems. This is the background for the national NH3 emission ceilings in Europe. However, in some countries the national legislation aims not only to meet these ceilings but also to reduce the atmospheric nitrogen deposition to local ecosystems. Such measures to reduce the load of nitrogen to local ecosystems were introduced in Denmark in 1994. In this paper we demonstrate that this regulation is reflected in the NH3 concentrations in Denmark. The Danish legislation forces farmers to applying manure to the fields during the crop-growing season. We have analyzed the seasonal variation in local NH3 concentrations over the time period of 1989-2003. During this period the seasonal variation has changed from having moderate spring and autumn concentration peaks to having a single and much more pronounced spring peak. In the analysis we apply an NH3 emission model to demonstrate that these changes in the seasonal variation are a result of the changes in the Danish legislation. The analysis demonstrates the strength of using a high-resolution emission model in the analysis of routine monitoring data.  相似文献   

10.
Reactive nitrogen can travel far from emission sources and impact sensitive ecosystems. From 2002 to 2006, policy actions have led to decreases in NO(x) emissions from power plants and motor vehicles. In this study, atmospheric chemical transport modeling demonstrates that these emissions reductions have led to a downward trend in ambient measurements of transported reactive nitrogen, especially atmospheric concentrations and wet deposition of nitrate. The trend in reduced nitrogen, namely ammonium, is ambiguous. As reduced nitrogen becomes a larger fraction of the reactive nitrogen budget, wide-spread NH(3) measurements and improved NH(3) emissions assessments are a critical need.  相似文献   

11.
A three-dimensional chemical transport model (PMCAMx) was used to investigate changes in fine particle (PM2.5) concentrations in response to changes in sulfur dioxide (SO2) and ammonia (NH3) emissions during July 2001 and January 2002 in the eastern United States. A uniform 50% reduction in SO2 emissions was predicted to produce an average decrease of PM2.5 concentrations by 26% during July but only 6% during January. A 50% reduction of NH3 emissions leads to an average 4 and 9% decrease in PM2.5 in July and January, respectively. During the summer, the highest concentration of sulfate is in South Indiana (12.8 microg x m(-3)), and the 50% reduction of SO2 emissions results in a 5.7 microg x m(-3) (44%) sulfate decrease over this area. During winter, the SO2 emissions reduction results in a 1.5 microg x m(-3) (29%) decrease of the peak sulfate levels (5.2 microg x m(-3)) over Southeast Georgia. The maximum nitrate and ammonium concentrations are predicted to be over the Midwest (1.9 (-3)g x m(-3) in Ohio and 5.3 microg x m(-3) in South Indiana, respectively) in the summer whereas in the winter these concentrations are higher over the Northeast (3 microg x m(-3) of nitrate in Connecticut and 2.7 microg x m(-3) of ammonium in New York). The 50% NH3 emissions reduction is more effective for controlling nitrate, compared with SO2 reductions, producing a 1.1 microg x m(-3) nitrate decrease over Ohio in July and a 1.2 microg x m(-3) decrease over Connecticut in January. Ammonium decreases significantly when either SO2 or NH3 emissions are decreased. However, the SO2 control strategy has better results in July when ammonium decreases, up to 2 microg x m(-3) (37%), are predicted in South Indiana. The NH3 control strategy has better results in January (ammonium decreases up to 0.4 microg x m(-3) in New York). The spatial and temporal characteristics of the effectiveness of these emission control strategies during the summer and winter seasons are discussed.  相似文献   

12.
This paper develops a simple model and suggests a plausible chemico-physical mechanism for a non-linear response between atmospheric sulphur and sulphur emissions. It contains simplified representations of transport, deposition and conversion processes and uses a proxy in-cloud oxidant-limited reaction along a pathway connecting an emission source with a receptor site. Individual pathway responses to emissions show linear behaviour above a threshold. However, by averaging the values of SO2 at the receptor site from different pathways a continuous non-linear relationship is obtained. As emissions reduce, distant emission sources become less significant contributors of sulphur dioxide at a receptor site but their emissions are still counted in an emission inventory, leading to an apparent non-linearity. Sulphate is always found to contribute a signal to the receptor site total. This model goes someway to explaining a proposed 'crossover' between observed proportions of wet and dry deposited sulphur in the UK as emissions have been reduced.  相似文献   

13.
This work focuses on bulk deposition in a rural area located around a large coal-fired power station in northeast Spain. Deposition chemistry was characterised by high concentrations of SO(4)(2-), Ca(2+) and NH(4)(+), which were relatively high when compared with other rural areas. Monthly bulk deposition evolution of major ions was the result of two superimposed patterns: one pattern related to the volume of precipitation and the other showed the seasonal influence of the major ionic sources. A major local origin was attributed to bulk deposition of SO(4)(2-), NH(4)(+), and Ca(2+), whereas a relatively higher contribution of an external source was deduced for NO(3)(-), Na(+) and Cl(-). The SO(4)(2-) concentrations showed a significant correlation with the local SO(2) emissions. High levels of Ca(2+) were due to the high alkalinity of soils in the study area, although an external origin was attributed to the frequent air mass intrusions from the Sahara. Sources of NH(4)(+) were related to intensive livestock farming in the area. Total suspended particles exert a marked influence over bulk deposition and neutralisation. Thus, despite the high emissions of SO(2) in the area, neutral pH values have always been attained given that the concentrations of Ca(2+) and NH(4)(+) account for the total neutralisation of NO(3)(-) and SO(4)(2-).  相似文献   

14.
Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-north-east of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data. Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to particulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission "signals" to particulate sulfur or light scattering.  相似文献   

15.
Agriculture releases copious fertilizing pollutants to air sheds and waterways of the northwestern United States. To evaluate threats to natural resources and historic rock paintings in remote Hells Canyon, Oregon and Idaho, deposition of ammonia (NH3), nitrogen oxides (NOx), sulfur dioxide (SO2), and hydrogen sulfide (H2S) at five stations along 60 km of the Snake River valley floor were passively sampled from July 2002 through June 2003, and ozone data and particulate chemistry were obtained from the Interagency Monitoring of Protected Visual Environments (IMPROVE) station at Hells Canyon. NH3 concentrations were high; biweekly averages peaked at 5-19 ppb in spring and summer and the nutrient-laden Snake River is a likely source. Fine particulate ammonium nitrate (NH4NO3) averaged 2.6 microg/m3 during the 20% of worst visibility days with winter drainage of air masses from the Snake River Basin and possibly long distance transport from southern California. Other pollutants were within background ranges. NH3 is corrosive to clay-based pictographs; nitrogen deposition can alter natural biotic communities and terrestrial ecosystem processes at levels reported here.  相似文献   

16.
Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review   总被引:17,自引:0,他引:17  
At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4+ uptake occurs through the shoots, roots and through both pathways. However, NH4+ is immobile in the soil and is converted to NO3- (nitrate). In agricultural systems, additions of NO3- to the soil (initially as NH3 or NH4+) and the consequent increases in the emissions of N2O (nitrous oxide, a greenhouse gas) and leaching of NO3- into the ground and surface waters are of major environmental concern. At the ecosystem level NH3 deposition cannot be viewed alone, but in the context of total N deposition. There are a number of forest ecosystems in North America that have been subjected to N saturation and the consequent negative effects. There are also heathlands and other plant communities in Europe that have been subjected to N-induced alterations. Regulatory mitigative approaches to these problems include the use of N saturation data or the concept of critical loads. Current information suggests that a critical load of 5-10 kg ha(-1) year(-1) of total N deposition (both dry and wet deposition combined of all atmospheric N species) would protect the most vulnerable terrestrial ecosystems (heaths, bogs, cryptogams) and values of 10-20 kg ha(-1) year(-1) would protect forests, depending on soil conditions. However, to derive the best analysis, the critical load concept should be coupled to the results and consequences of N saturation.  相似文献   

17.
Knowledge of the sources and distribution of ammonia (NH3) emissions underpins our understanding of the nitrogen budget. Research has focused on quantifying NH3 emissions from anthropogenic sources, whilst those from natural sources have received little attention internationally. Seabirds excrete large quantities of nitrogen, making seabird colonies a major natural source of NH3. Ammonia emissions from each UK seabird species were estimated and combined with population distribution data to model their spatial distribution. Total NH3 emissions from UK seabirds were estimated at 2.7 kt per year. Seabird emissions are concentrated in remote parts of the UK where anthropogenic emissions are small, so that seabirds often represent the main source of NH3 emissions in these areas. Seabird NH3 emissions were found to have increased by 34% since the 1970s. This corresponds to population changes which may be influenced by human activities, showing that even this natural source can be anthropogenically modified.  相似文献   

18.
In Europe, secondary particulate matter (PM) comprises 50% or more of PM 2.5. To reduce PM concentrations requires lowering precursor emissions. Since the 1980s, SO(2) emissions have decreased by more than 60%, while particle concentrations have decreased less. NO(x) and NH(3) emissions have decreased slightly. The role of ammonia in particle formation is addressed here. It is shown that secondary PM concentrations can only be effectively reduced if ammonia emissions are decreased in much the same way as those of SO(2) and NO(x).  相似文献   

19.
The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NOx) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resolution emission maps for the Republic of Ireland have been created using emission totals and a geographical information system, supported by surrogate statistics and landcover information. Data have been subsequently allocated to the EMEP 50 x 50-km grid, used in long-range transport models for the investigation of transboundary air pollution. Approximately two-thirds of SO2 emissions in Ireland emanate from two grid-squares. Over 50% of total SO2 emissions originate from one grid-square in the west of Ireland, where the largest point sources of SO2 are located. Approximately 15% of the total SO2 emissions originate from the grid-square containing Dublin. SO2 emission densities for the remaining areas are very low, < 1 t km-2 year-1 for most grid-squares. NOx emissions show a very similar distribution pattern. However, NOx emissions are more evenly spread over the country, as about 40% of total NOx emissions originate from road transport.  相似文献   

20.
The deposition of the base cations calcium, magnesium and potassium from the atmosphere needs to be quantified in the calculation of the total deposited acidity in the critical loads approach. Of these base cations, calcium has been found to be the most important in terms of mass deposited. However, the sources of calcium to the atmosphere are not well understood. Recently, the first spatially disaggregated inventory of industrial calcium emissions for Europe was presented by Lee and Pacyna (1998) who estimated a total European emission of 0.7–0.8 Mt yr-1. However, it is thought that wind blown dust from soils contributes a substantial fraction to the deposition of calcium. In this work, the source strength of calcium from arid regions within the EMEP modelling domain was estimated using the global mineral dust emission data base of Tegen and Fung (1994) and an estimation of the calcium content of soils. This results in a “natural” calcium emission of 6 Mt yr-1. A long-range transport model, TRACK, was used to calculate the wet and dry deposition of calcium arising from these industrial and natural sources to the UK which resulted in a total deposition of 29–30 kt yr-1. Of this annual deposition, 0.6–0.7 kt arises from cement manufacturing, 0.02–0.03 kt from iron and steel manufacturing, 0.8–0.83 kt from a large point source power generation, and 28 kt from power generation from a small boiler plant. The natural emissions of calcium from arid regions result in a deposition of calcium to the UK of 0.5 kt yr-1. The measured wet deposition of calcium to the UK is 89 kt yr-1 and the estimated dry deposition 14 kt yr-1. The short-fall in the modelled deposition of calcium is thus of the order of 70 kt yr-1, which is suggested to arise from wind-blown dust from agricultural land in the UK and mainland Europe. The estimated emissions, and thus modelled deposition are rather uncertain, such that estimating deposition of calcium attributable to agricultural soil emissions by differencing has a large uncertainty. However, this is the first such study of its kind for Europe and represents a first step towards understanding the sources of calcium and their contribution to mitigating deposited acidity from acidifying pollutants such as sulphur dioxide, nitrogen oxides and ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号