首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
安全科学   7篇
废物处理   5篇
环保管理   36篇
综合类   7篇
基础理论   9篇
污染及防治   32篇
评价与监测   10篇
社会与环境   1篇
  2023年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   13篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1972年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有107条查询结果,搜索用时 62 毫秒
11.
ABSTRACT: The purpose of this study was to evaluate the performance of Spatially Integrated Models for Phosphorus Loading and Erosion (SIMPLE) in predicting runoff volume, sediment loss, and phosphorus loading from two watersheds. The modeling system was applied to the 334 ha QOD subwatershed, part of the Owl Run watershed, located in Fauquier County, Virginia, and to the 2240 ha watershed, Battle Branch, located in Delaware County, Oklahoma. Simulation runs were conducted at cell and field scales, and simulation results were compared with observed data. Runoff volume and dissolved phosphorus loading were measured at the Battle Branch watershed. Runoff volume, sediment yield, and total phosphorus loading were measured at the QOD site. SIMPLE tended to underestimate runoff volumes during the dormant period, from November to March. The comparison between observed and predicted dissolved phosphorus showed better correlation than for observed and predicted total phosphorus loading. Cell level simulations provided similar estimates of runoff volume and phosphorus loading when compared to field level simulations for both watersheds. However, observed sediment yields better compared with the values predicted from the cell level simulation when compared to field level simulation. Finally, results of model evaluation indicated that SIMPLE's predictive ability is acceptable for screening applications but not for site-specific quantitative predictions.  相似文献   
12.
Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor, and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NOx), particulate matter (<2.5 μm diameter; PM2.5) mass, ultrafine particle (UFP; <100 nm diameter) number, black carbon (BC), speciated HAPs (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally greater than differences among the three communities for the same ME category, suggesting that the ME proximity factors may be more broadly applicable to urban MEs.
Implications:Estimates of population exposure to air pollutants extrapolated from ambient measurements at ambient fixed site monitors or exposure surrogates are prone to uncertainty. This study measured concentrations of mobile source air toxics (MSAT) and related criteria pollutants within in-vehicle, outdoor near-road, and indoor urban MEs to provide multipollutant ME measurements that can be used to calibrate regulatory exposure models.  相似文献   
13.
Measurements conducted on full-scale hazardous waste incinerators have occasionally shown a relationship between carbon monoxide (CO) emissions and emissions of toxic organic compounds. In this study, four mixtures of chlorinated C1 and C2 hydrocarbons were diluted in commercial-grade heptane and burned in a water-cooled turbulent flame reactor (TFR) under two different excess air levels. No correlation between CO and organic emissions could be discerned. Reasons for this lack of observable correlations are discussed in terms of combustion and chemical reaction kinetic theory.  相似文献   
14.
ABSTRACT

Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 |j.m in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 |j.m in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM25+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agreed fairly well with that of NiSO4, while most of the V spectra closely resembled that of vanadyl sulfate (VO?SO4?xH2O). The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. Arsenic was present as an arsen-ate (As+5). X-ray diffraction patterns of the PM2.5 fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the loss on ignition (LOI) ranging from 64 to 87% for the PM2.5 fraction and from 88 to 97% for the PM2.5+ fraction. Based on 13C nuclear magnetic resonance (NMR) analysis, the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.  相似文献   
15.
This study analyzed insolation data to account for multiple scattering in calculating optimal tilt angles for stationary and seasonally moving photovoltaics on three different roof types in the US Pacific Northwest: vegetated roofs, white roofs, and dark roofs. Using these results, we modeled the energy savings for vegetated roofs and roofs covered in varying numbers of photovoltaic panels. We then calculated the net present value, internal rate of return, and other economic measures for all possible combinations of covering rooftops in mixes of photovoltaic arrays and vegetation, accounting for installation costs, proposed carbon taxes, stormwater management discounts, and other relevant factors. Our results quantify how, in the US Pacific Northwest and similar locations, photovoltaics produce higher returns on investment than do vegetated roofs for new buildings, while vegetated roofs produce better returns on investment than do photovoltaics for older buildings. This is important because in many areas, some buildings have photovoltaics when a vegetated roof would have been more cost and energy efficient, while other buildings have vegetated roofs when photovoltaics would have been more cost and energy efficient. Potential applications include modifying incentive programs and other policies to account properly for building age, use, and other relevant factors to ensure building owners make the most energy-efficient decisions between photovoltaic versus vegetated roof installation. Our research also demonstrates how positive returns on investment can be realized in the US Pacific Northwest and similar regions through vegetated roofs and photovoltaics provided they are each installed optimally.  相似文献   
16.
Angradi, Ted R., David W. Bolgrien, Matt A. Starry, and Brian H. Hill, 2012. Modeled Summer Background Concentration of Nutrients and Suspended Sediment in the Mid‐Continent (USA) Great Rivers. Journal of the American Water Resources Association (JAWRA) 48(5): 1054‐1070. DOI: 10.1111/j.1752‐1688.2012.00669.x Abstract: We used regression models to predict summer background concentration of total nitrogen (N), total phosphorus (P), and total suspended solids (TSS), in the mid‐continent great rivers: the Upper Mississippi, the Lower Missouri, and the Ohio. From multiple linear regressions of water quality indicators with land use and other stressor variables, we determined the concentration of the indicators when the predictor variables were all set to zero — the y‐intercept. Except for total P on the Upper Mississippi River, we could predict background concentration using regression models. Predicted background concentration of total N was about the same on the Upper Mississippi and Lower Missouri Rivers (430 μg l?1), which was lower than percentile‐based values, but was similar to concentrations derived from the response of sestonic chlorophyll a to great river total N concentration. Background concentration of total P on the Lower Missouri (65 μg l?1) was also lower than published and percentile‐based concentrations. Background TSS concentration was higher on the Lower Missouri (40 mg l?1) than the other rivers. Background TSS concentration on the Upper Mississippi (16 mg l?1) was below a threshold (30 mg l?1) designed to protect aquatic vegetation. Our model‐predicted concentrations for the great rivers are an attempt to estimate background concentrations for water quality indicators independent from thresholds based on percentiles or derived from stressor‐response relationships.  相似文献   
17.
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science–policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.  相似文献   
18.
The U.S. Environmental Protection Agency (EPA) has proposed regulations that would require corrective action (e.g., soil excavation and groundwater removal and treatment) at municipal solid waste landfills (MSWLFs) and hazardous waste treatment, storage, and disposal facilities (TSDFs). This paper presents an overview of the proposed corrective action regulations, and discusses their relationship to proposed or existing closure and post-closure care regulations. The paper then presents estimated corrective action cost curves for various MSWLF scenarios defined by landfill area, average waste thickness, and the presence or absence of a clay liner. The paper finally illustrates the economic benefits of sound closure and postclosure care by comparing estimated costs of corrective action to estimated costs of closure and postclosure care at MSWLFs.  相似文献   
19.
Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage) diversity and concentration. Taken together, and when considered in conjunction with previously published research, the results of these experiments illustrate several important limitations of common disinfection processes as applied in the treatment of municipal wastewaters. In general, it is not clear that conventional disinfection processes, as commonly implemented, are effective for control of the risks of disease transmission, particularly those associated with viral pathogens. Microbial quality in receiving streams may not be substantially improved by the application of these disinfection processes; under some circumstances, an argument can be made that disinfection may actually yield a decrease in effluent and receiving water quality. Decisions regarding the need for effluent disinfection must account for site-specific characteristics, but it is not clear that disinfection of municipal wastewater effluents is necessary or beneficial for all facilities. When direct human contact or ingestion of municipal wastewater effluents is likely, disinfection may be necessary. Under these circumstances, UV irradiation appears to be superior to chlorination in terms of microbial quality and chemistry and toxicology. This advantage is particularly evident in effluents that contain appreciable quantities of ammonia-nitrogen or organic nitrogen.  相似文献   
20.
Tests were performed to compare the evaporation rate of 10 volume percent (vol%) ethanol-blended gasoline (E10) with the evaporation rate of its base gasoline. Weight loss, temperature, pressure, and humidity were monitored as lab-blended E10 and base gasolines were evaporated concurrently from glass cylinders placed on balances located side by side under an exhaust hood. The averaged results of four tests at about 70°F showed that the E10 lost more total weight to evaporation than the base fuel, but less gasoline. The increased weight was due to ethanol, which was present in the E10 evaporative emissions at concentrations of about 13 weight percent (wt%). In two-hour tests at temperatures near 70°F, during which 4.5 to 5.3 wt% of initial fuel samples were evaporated, E10 fuels lost an average of about 5% less gasoline than their base fuels. A similar result was obtained for a one-hour test, during which about 2.4 to 2.5 wt% of the initial fuel samples were evaporated. Gas chromatography (GC) component analysis indicated that the compositions of the ethanol-free emissions from the two fuels were similar. Reid vapor pressure (RVP) measurements made using a Grabner CCA-VPS according to ASTM D5191-91 indicated that E10 fuels underwent an approximate 5% greater RVP reduction than their respective base fuels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号