首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   12篇
  国内免费   2篇
安全科学   14篇
废物处理   5篇
环保管理   52篇
综合类   30篇
基础理论   65篇
污染及防治   113篇
评价与监测   14篇
社会与环境   8篇
灾害及防治   1篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   8篇
  2018年   13篇
  2017年   5篇
  2016年   8篇
  2015年   5篇
  2014年   1篇
  2013年   40篇
  2012年   10篇
  2011年   17篇
  2010年   10篇
  2009年   16篇
  2008年   8篇
  2007年   14篇
  2006年   15篇
  2005年   13篇
  2004年   7篇
  2003年   11篇
  2002年   19篇
  2001年   18篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
  1974年   2篇
  1967年   1篇
  1964年   1篇
  1954年   1篇
排序方式: 共有302条查询结果,搜索用时 62 毫秒
241.
A study using two stack-sampling methodologies for collecting particulate matter (PM) emissions was conducted using a hot filter followed by a cold impinger sampling train and a dilution sampler. Samples were collected from ferrous iron metal casting processes that included pouring molten iron into a sand mold containing an organic binder, metal cooling, removal of the sand from the cooled casting (shakeout), and postshakeout cooling. The shakeout process contributed more to PM emissions than the metal pouring and cooling processes. Particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass emissions for the entire casting cycle ranged from 3.4 to 4.7 lb/t of metal for the hot filter/impinger method and from 0.8 to 1.8 lb/t of metal for the dilution method. Most of the difference was due to PM captured by the impingers, much of which was probably dissolved gases rather than condensable vapors. Of the PM fraction captured by the impingers, 96-98% was organic in nature. The impinger PM fraction contributed 32-38% to the total suspended particle mass and caused a factor of 2-4 positive bias for PM2.5 emissions. For the pouring and cooling processes only, the factor increased to over seven times.  相似文献   
242.
Major benefits were weighed against major costs associated with recent saltcedar control efforts along the Middle Pecos River, New Mexico. The area of study was restricted to both sides of the channel and excluded tributaries along the 370 km between Sumner and Brantley dams. Direct costs (helicopter spraying, dead tree removal, and revegetation) within the study area were estimated to be $2.2 million but possibly rising to $6.4 million with the adoption of an aggressive revegetation program. Indirect costs associated with increased potential for erosion and reservoir sedimentation would raise the costs due to increased evaporation from more extensive shallows in the Pecos River as it enters Brantley Reservoir. Actions such as dredging are unlikely given the conservative amount of sediment calculated (about 1% of the reservoir pool). The potential for water salvage was identified as the only tangible benefit likely to be realized under the current control strategy. Estimates of evapotranspiration (ET) using Landsat TM data allowed estimation of potential water salvage as the difference in ET before and after treatment, an amount totaling 7.41 million m3 (6010 acre-ft) per year. Previous saltcedar control efforts of roughly the same magnitude found that salvaged ET recharged groundwater and no additional flows were realized within the river. Thus, the value of this recharge is probably less than the lowest value quoted for actual in-channel flow, and estimated to be < $63,000 per year. Though couched in terms of costs and benefits, this paper is focused on what can be considered the key trade-off under a complete eradication strategy: water salvage vs. erosion and sedimentation. It differs from previous efforts by focusing on evaluating the impacts of actual control efforts within a specific system. Total costs (direct plus potential indirect) far outweighed benefits in this simple comparison and are expected to be ongoing. Problems induced by saltcedar control may permanently reduce reservoir capacity and increase reservoir evaporation rates, which could further deplete supplies on this water short system. These potential negative consequences highlight that such costs and benefits need to be considered before initiating extensive saltcedar control programs on river systems of the western United States.  相似文献   
243.
Management of public lands occurs today with high levels of scrutiny and controversy. To succeed, managers seek the support, involvement, and endorsement of the public. This study examines trust as an indicator of managerial success and attempts to identify and measure the components that most influence it. A review of trust literature yielded 14 attributes that were hypothesized to contribute to trust, grouped into the three dimensions of Shared Norms and Values, Willingness to Endorse, and Perceived Efficacy. Operationalizing these attributes and dimensions, a telephone survey was administered to a sample of Montana, USA, residents living adjacent to the Bitterroot National Forest (= 1,152). Each of the attributes was measured in the context of federal lands fire and fuel management. Structural equation modeling showed that all 14 attributes were found to be influential contributors to levels of trust. Results suggest that if managers are to maintain or increase levels of public trust, they need to consider each of trust’s attributes as they make social, ecological, and economic resource decisions.  相似文献   
244.
A travel-time based approach is developed for estimating first-order reaction rate coefficients for transport with nonequilibrium linear mass transfer in heterogeneous media. Tracer transport in the mobile domain is characterized by a travel-time distribution, and mass transfer rates are described by a convolution product of concentrations in the mobile domain and a memory function rather than predefining the mass transfer model. A constant first-order reaction is assumed to occur only in the mobile domain. Analytical solutions in Laplace domain can be derived for both conservative and reactive breakthrough curves (BTCs). Temporal-moment analyses are presented by using the first and second moments of conservative and reactive BTCs and the mass consumption of the reactant for an inverse Gaussian travel-time distribution. In terms of moment matching, there is no need for one to specify the mass transfer model. With the same capacity ratio and the mean retention time, all mass transfer models will lead to the same moment-derived reaction rate coefficients. In addition, the consideration of mass transfer generally yields larger estimations of the reaction rate coefficient than models ignoring mass transfer. Furthermore, the capacity ratio and the mean retention time have opposite influences on the estimation of the reaction rate coefficient: the first-order reaction rate coefficient is positively linearly proportional to the capacity ratio, but negatively linearly proportional to the mean retention time.  相似文献   
245.
A Photochemical Trajectory Model (PTM), containing the Master Chemical Mechanism version 3.1 (MCM v3.1) coupled with an optimised representation of gas–aerosol absorptive partitioning of 365 oxygenated product species, has been used to simulate mass concentrations of secondary organic aerosol (SOA) for the conditions of the TORCH-2003 campaign in the south-east UK in late July and August 2003. A comprehensive reference dataset of 50 case study arrival events (and 4750 associated hourly air mass history events) has been compiled, which considers the base case conditions and scenarios in which emissions of anthropogenic pollution have been reduced by factors of up to 100. The relative contributions of SOA derived from anthropogenic and biogenic precursors are presented for the range of conditions, and the composition of these simulated components is discussed in terms of average molecular formulae, atomic ratios (H/C, O/C and N/C) and organic aerosol mass to organic carbon mass ratios (OM/OC), which are compared to reported measurements. The MCM v3.1 dataset has been used as a reference benchmark for development and optimisation of a reduced (14 species) SOA module for use with version 2 the Common Representative Intermediates mechanism (CRI v2), described in the first of two preceding companion papers [Jenkin, M.E., Watson, L.A., Utembe, S.R., Shallcross, D.E., 2008a. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 1: gas phase mechanism development. Atmospheric Environment, 42, pp. 7185–7195. doi:10.1016/j.atmosenv.2008.07.028.]. The resultant version of the PTM containing CRI v2 and the reduced SOA module has been used to simulate the entire TORCH-2003 campaign at hourly resolution, and the contributions of SOA derived from anthropogenic and biogenic precursors are presented and discussed. The reduced SOA module is also shown to be compatible with the most reduced CRI variant (CRI v2-R5), described in the second of two preceding companion papers [Watson, L.A., Shallcross, D.E., Utembe, S.R., Jenkin, M.E., 2008. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: gas phase mechanism reduction. Atmospheric Environment, 42, pp. 7196–7204. doi:10.1016/j.atmosenv.2008.07.034.], which is considered appropriate as a traceable reference mechanism in global simulations.  相似文献   
246.
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.  相似文献   
247.
Thermally derived carbon fractions including organic carbon (OC) and elemental carbon (EC) have been reported for the U.S. Interagency Monitoring of PROtected Visual Environments (IMPROVE) network since 1987 and have been found useful in source apportionment studies and to evaluate quartz-fiber filter adsorption of organic vapors. The IMPROVE_A temperature protocol defines temperature plateaus for thermally derived carbon fractions of 140 degrees C for OC1, 280 degrees C for OC2, 480 degrees C for OC3, and 580 degrees C for OC4 in a helium (He) carrier gas and 580 degrees C for EC1, 740 degrees C for EC2, and 840 degrees C for EC3 in a 98% He/2% oxygen (O2) carrier gas. These temperatures differ from those used previously because new hardware used for the IMPROVE thermal/optical reflectance (IMPROVE_TOR) protocol better represents the sample temperature than did the old hardware. A newly developed temperature calibration method demonstrates that these temperatures better represent sample temperatures in the older units used to quantify IMPROVE carbon fractions from 1987 through 2004. Only the thermal fractions are affected by changes in temperature. The OC and EC by TOR are insensitive to the change in temperature protocol, and therefore the long-term consistency of the IMPROVE database is conserved. A method to detect small quantities of O2 in the pure He carrier gas shows that O2 levels above 100 ppmv also affect the comparability of thermal carbon fractions but have little effect on the IMPROVE_TOR split between OC and EC.  相似文献   
248.
Wilderness areas are ecologically intact landscapes predominantly free of human uses, especially industrial‐scale activities that result in substantial biophysical disturbance. This definition does not exclude land and resource use by local communities who depend on such areas for subsistence and bio‐cultural connections. Wilderness areas are important for biodiversity conservation and sustain key ecological processes and ecosystem services that underpin planetary life‐support systems. Despite these widely recognized benefits and values of wilderness, they are insufficiently protected and are consequently being rapidly eroded. There are increasing calls for multilateral environmental agreements to make a greater and more systematic contribution to wilderness conservation before it is too late. We created a global map of remaining terrestrial wilderness following the established last‐of‐the‐wild method, which identifies the 10% of areas with the lowest human pressure within each of Earth's 62 biogeographic realms and identifies the 10 largest contiguous areas and all contiguous areas >10,000 km2. We used our map to assess wilderness coverage by the World Heritage Convention and to identify gaps in coverage. We then identified large nationally designated protected areas with good wilderness coverage within these gaps. One‐quarter of natural and mixed (i.e., sites of both natural and cultural value) World Heritage Sites (WHS) contained wilderness (total of 545,307 km2), which is approximately 1.8% of the world's wilderness extent. Many WHS had excellent wilderness coverage, for example, the Okavango Delta in Botswana (11,914 km2) and the Central Suriname Nature Reserve (16,029 km2). However, 22 (35%) of the world's terrestrial biorealms had no wilderness representation within WHS. We identified 840 protected areas of >500 km2 that were predominantly wilderness (>50% of their area) and represented 18 of the 22 missing biorealms. These areas offer a starting point for assessing the potential for the designation of new WHSs that could help increase wilderness representation on the World Heritage list. We urge the World Heritage Convention to ensure that the ecological integrity and outstanding universal value of existing WHS with wilderness values are preserved.  相似文献   
249.
There has been much recent interest in the concept of rewilding as a tool for nature conservation, but also confusion over the idea, which has limited its utility. We developed a unifying definition and 10 guiding principles for rewilding through a survey of 59 rewilding experts, a summary of key organizations’ rewilding visions, and workshops involving over 100 participants from around the world. The guiding principles convey that rewilding exits on a continuum of scale, connectivity, and level of human influence and aims to restore ecosystem structure and functions to achieve a self-sustaining autonomous nature. These principles clarify the concept of rewilding and improve its effectiveness as a tool to achieve global conservation targets, including those of the UN Decade on Ecosystem Restoration and post-2020 Global Biodiversity Framework. Finally, we suggest differences in rewilding perspectives lie largely in the extent to which it is seen as achievable and in specific interventions. An understanding of the context of rewilding projects is the key to success, and careful site-specific interpretations will help achieve the aims of rewilding.  相似文献   
250.
The Olsen-P status of grazed grassland (Lolium perenne L.) swards in Northern Ireland was increased over a 5-yr period (March 2000 to February 2005) by applying different rates of P fertilizer (0, 10, 20, 40, or 80 kg P ha(-1) yr(-1)) to assess the relationship between soil P status and P losses in land drainage water and overland flow. Plots (0.2 ha) were hydrologically isolated and artificially drained to v-notch weirs, with flow proportional monitoring of drainage water and overland flow. Annually, the collectors for overland flow intercepted between 11 and 35% of the surplus rainfall. Single flow events accounted for up to 52% of the annual dissolved reactive phosphorus (DRP) load. The Olsen-P status of the soil influenced DRP and total phosphorus (TP) concentrations in land drainage water and overland flow. Annual TP loss was highly variable and ranged from 0.19 to 1.55 kg P ha(-1) yr(-1) for the plot receiving no P fertilizer and from 0.35 to 2.94 kg P ha(-1) yr(-1) for the plot receiving 80 kg P ha(-1) yr(-1). Despite the Olsen-P status in the soils ranging from 22 to 99 mg P kg(-1), after 5 yr of fertilizer P applications it was difficult to identify a clear Olsen-P concentration at which P losses increased. Any relationship was confounded by annual variability of hydrologic events and flows and by hydrologic differences between plots. Withholding P fertilizer for over 5 yr was not long enough to lower P losses or to have an adverse effect on herbage P concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号