首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12651篇
  免费   420篇
  国内免费   3593篇
安全科学   802篇
废物处理   787篇
环保管理   1147篇
综合类   5509篇
基础理论   2750篇
环境理论   2篇
污染及防治   4193篇
评价与监测   579篇
社会与环境   489篇
灾害及防治   406篇
  2023年   150篇
  2022年   488篇
  2021年   394篇
  2020年   290篇
  2019年   269篇
  2018年   459篇
  2017年   576篇
  2016年   587篇
  2015年   605篇
  2014年   821篇
  2013年   1079篇
  2012年   1325篇
  2011年   1106篇
  2010年   721篇
  2009年   691篇
  2008年   785篇
  2007年   651篇
  2006年   566篇
  2005年   763篇
  2004年   811篇
  2003年   760篇
  2002年   348篇
  2001年   294篇
  2000年   282篇
  1999年   275篇
  1998年   252篇
  1997年   252篇
  1996年   225篇
  1995年   186篇
  1994年   122篇
  1993年   124篇
  1992年   107篇
  1991年   86篇
  1990年   58篇
  1989年   30篇
  1988年   27篇
  1987年   10篇
  1986年   17篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1968年   2篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 728 毫秒
51.
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a “dynamic protection layer”, as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.  相似文献   
52.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
53.
PM_(2.5) separator directly affects the accuracy of PM_(2.5) sampling.The specification testing and evaluation for PM_(2.5) separator is particularly important,especially under China's wide variation of terrain and climate.In this study,first a static test apparatus based on polydisperse aerosol was established and calibrated to evaluate the performance of the PM_(2.5) separators.A uniform mixing chamber was developed to make particles mix completely.The aerosol concentration relative standard deviations of three test points at the same horizontal chamber position were less than 0.57%,and the particle size distribution obeyed logarithmic normal distribution with an R~2 of 0.996.The flow rate deviation between the measurement and the set point flow rate agreed to within ± 1.0% in the range of -40 to 50℃.Secondly,the separation,flow and loading characteristics of three cyclone separators(VSCC-A,SCC-A and SCC112) were evaluated using this system.The results showed that the 50% cutoff sizes(D_(50)) of the three cyclones were 2.48,2.47 and 2.44 μm when worked at the manufacturer's recommended flow rates,respectively.The geometric standard deviation(GSD) of the capture efficiency of VSCCA was 1.23,showed a slightly sharper than SCC-A(GSD = 1.27),while the SCC112 did not meet the relevant indicator(GSD = 1.2 ± 0.1) with a GSD = 1.44.The flow rate and loading test had a great effect on D_(50),while the GSD remained almost the same as before.In addition,the maintenance frequency under different air pollution conditions of the cyclones was summarized according to the loading test.  相似文献   
54.
Exposure to engineered nanomaterials(ENMs), such as graphene oxide(GO), can potentially induce the response of various molecular signaling pathways, which can mediate the protective function or the toxicity induction.Wnt signaling pathway is conserved evolutionarily in organisms.Using Caenorhabditis elegans as an in vivo assay model, we investigated the effect of GO exposure on intestinal Wnt signaling.In the intestine, GO exposure dysregulated Frizzled receptor MOM-5, Disheveled protein DSH-2, GSK-3(a component of APC complex), and two β-catenin proteins(BAR-1 and HMP-2), which mediated the induction of GO toxicity.In GO exposed nematodes, a Hox protein EGL-5 acted as a downstream target of BAR-1, and fatty acid transport ACS-22 acted as a downstream target of HMP-2.Functional analysis on HMP-2 and ACS-22 suggested that the dysregulation of these two proteins provides an important basis for the observed deficit in functional state of intestinal barrier.Our results imply the association of dysregulation in physiological and functional states of intestinal barrier with toxicity induction of GO in organisms.  相似文献   
55.
Inhaled atmospheric fine particulate matter(PM_(2.5)) includes soluble and insoluble fractions,and each fraction can interact with cells and cause adverse effects.PM_(2.5) samples were collected in Jinan,China,and the soluble and insoluble fractions were separated.According to physiochemical characterization,the soluble fraction mainly contains watersoluble ions and organic acids,and the insoluble fraction mainly contains kaolinite,calcium carbonate and some organic carbon.The interaction between PM_(2.5) and model cell membranes was examined with a quartz crystal microbalance with dissipation(QCM-D) to quantify PM_(2.5) attachment on membranes and membrane disruption.The cytotoxicity of the total PM_(2.5) and the soluble and insoluble fractions,was investigated.Negatively charged PM_(2.5) can adhere to the positively charged membranes and disrupt them.PM_(2.5)also adheres to negatively charged membranes but does not cause membrane rupture.Therefore,electrostatic repulsion does not prevent PM_(2.5) attachment,but electrostatic attraction induces remarkable membrane rupture.The human lung epithelial cell line A549 was used for cytotoxicity assessment.The detected membrane leakage,cellular swelling and blebbing indicated a cell necrosis process.Moreover,the insoluble PM_(2.5) fraction caused a higher cell mortality and more serious cell membrane damage than the soluble fraction.The levels of reactive oxygen species(ROS) enhanced by the two fractions were not significantly different.The findings provide more information to better understand the mechanism of PM_(2.5) cytotoxicity and the effect of PM_(2.5) solubility on cytotoxicity.  相似文献   
56.
Changes in water quality from source water to finished water and tap water at two conventional drinking water treatment plants(DWTPs) were monitored.Beside the routine water quality testing,Caenorhabditis elegans-based toxicity assays and the fluorescence excitation–emission matrices technique were also applied.Both DWTPs supplied drinking water that met government standards.Under current test conditions,both the investigated finished water and tap water samples exhibited stronger lethal,genotoxic and reprotoxic potential than the relative source water sample,and the tap water sample was more lethal but tended to be less genotoxic than the corresponding finished water sample.Meanwhile,the nearly complete removal of tryptophan-like substances and newly generated tyrosine-like substances were observed after the treatment of drinking water,and humic-like substances were identified in the tap water.Based on these findings,toxic pollutants,including genotoxic/reproductive toxicants,are produced in the drinking water treatment and/or distribution processes.Moreover,further studies are needed to clarify the potentially important roles of tyrosine-like and humic-like substances in mediating drinking water toxicity and to identify the potential sources of these contaminants.Additionally,tryptophan-like fluorescence may be adopted as a useful parameter to monitor the treatment performance of DWTPs.Our observations provided insights into the importance of utilizing biotoxicity assays and fluorescence spectroscopy as tools to complement the routine evaluation of drinking water.  相似文献   
57.
Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.  相似文献   
58.
An effective broad-spectrum fungicide, azoxystrobin (AZ), has been widely detected in aquatic ecosystems, potentially affecting the growth of aquatic microorganisms. In the present study, the eukaryotic alga Monoraphidium sp. and the cyanobacterium Pseudanabaena sp. were exposed to AZ for 7 days. Our results showed that 0.2–0.5 mg/L concentrations of AZ slightly inhibited the growth of Monoraphidium sp. but stimulated Pseudanabaena sp. growth. Meanwhile, AZ treatment effectively increased the secretion of total organic carbon (TOC) in the culture media of the two species, and this phenomenon was also found in a freshwater microcosm experiment (containing the natural microbial community). We attempted to assess the effect of AZ on the function of aquatic microbial communities through metabolomic analysis and further explore the potential risks of this compound. The metabonomic profiles of the microcosm indicated that the most varied metabolites after AZ treatment were related to the citrate cycle (TCA), fatty acid biosynthesis and purine metabolism. We thereby inferred that the microbial community increased extracellular secretions by adjusting metabolic pathways, which might be a stress response to reduce AZ toxicity. Our results provide an important theoretical basis for further study of fungicide stress responses in aquatic microcosm microbial communities, as well as a good start for further explorations of AZ detoxification mechanisms, which will be valuable for the evaluation of AZ environmental risk.  相似文献   
59.
The degradation of plastic debris may result in the generation of nanoplastics (NPs). Their high specific surface area for the sorption of organic pollutions and toxic heavy metals and possible transfer between organisms at different nutrient levels make the study of NPs an urgent priority. However, there is very limited understanding on the occurrence, distribution, abundant, and fate of NPs in the environment, partially due to the lack of suitable techniques for the separation and identification of NPs from complex environmental matrices. In this review, we first overviewed the state-of-the-art methods for the extraction, separation, identification and quantification of NPs in the environment. Some of them have been successfully applied for the field determination of NPs, while some are borrowed from the detection of microplastics or engineered nanomaterials. Then the possible fate and transport of NPs in the environment are thoroughly described. Although great efforts have been made during the recent years, large knowledge gaps still exist, such as the relatively high detection limit of existing method failing to detect ultralow masses of NPs in the environment, and spherical polystyrene NP models failing to represent the various compositions of NPs with different irregular shapes, which needs further investigation.  相似文献   
60.
Biogenic volatile organic compounds (BVOCs) in the atmosphere play important roles in the formation of ground-level ozone and secondary organic aerosol (SOA) in global scale and also in regional scale under some condition due to their large amount and relatively higher reactivity. In places with high plant cover in the tropics and in China where air pollution is serious, the effect of BVOCs on ozone and secondary organic aerosols is strong. The present research aims to provide a comprehensive review about the emission rate, emission inventory, research methods, the influencing factors of BVOCs emissions, as well as their impacts on atmospheric environment quality and human health in recent years in Asia based on the summary and analysis of literatures. It is suggested to use field direct measurement method to obtain the emission rate and model method to calculate the emission amount. Several recommendations are given for future investigation and policy development on BVOCs emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号