首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   9篇
  国内免费   44篇
安全科学   1篇
环保管理   1篇
综合类   47篇
基础理论   3篇
污染及防治   14篇
  2015年   5篇
  2014年   1篇
  2013年   16篇
  2012年   14篇
  2011年   6篇
  2010年   6篇
  2009年   11篇
  2008年   6篇
  2007年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
51.
缺氧附着生长反应器同步脱氮除硫除碳运行效果探讨   总被引:1,自引:1,他引:0  
李巍  赵庆良  刘颢 《环境科学》2008,29(7):1855-1859
在缺氧环境下,应用附着生长反应器,通过降低水力停留时间增加进水底物负荷,对废水中硫化物,硝酸盐、亚硝酸盐和有机物等污染物质的降解情况进行了研究.结果表明,进水硫化物、硝酸盐氮、亚硝酸盐氮和有机物浓度分别为200、52.5、20和20mg/L,去除率分别达到99%、99%、95.5%和80%,实现了兼养脱硫反硝化氮、硫、碳的同步去除.随着底物负荷的增大,硝酸盐和亚硝酸盐对冲击负荷的适应性逐渐变小;硝酸盐降解对进水负荷冲击的适应性强于亚硝酸盐;与增加进水负荷对反应器带来的冲击相比,缺氧环境的破坏对硝酸盐和亚硝酸盐的降解影响大;去除硫化物的60%被生物氧化为单质硫;缺氧反应器中发生了自养反硝化和异养反硝化作用,自养反硝化占主导地位,异养反硝化的发生力度为21.76%.  相似文献   
52.
利用序批式生物膜反应器启动厌氧氨氧化研究   总被引:11,自引:0,他引:11       下载免费PDF全文
研究了在缺氧条件下利用序批式生物膜反应器(SBBR)快速启动厌氧氨氧化过程,并考察了该过程中反应器的脱氮效率、厌氧氨氧化现象、生物膜性质及微生物群落的变化.从第60d开始出现ANAMMOX现象,经过100多天的启动,最高总氮负荷达0.67kg-N/m3×d,总氮去除率达到87.3%.生物膜厚度和污泥颜色、形态发生明显变化,厌氧氨氧化菌的相对含量达到40%以上,成为反应器的优势菌种.本研究表明SBBR是一种高效启动厌氧氨氧化的生物反应器.  相似文献   
53.
利用大流量主动采样器于2008年8月至2009年7月采集了西安城区气态和颗粒态大气样品,研究了大气中多溴联苯醚(PBDEs)的季节变化特征.结果表明,西安大气中总PBDEs(气相+颗粒相)浓度范围为21.38~161.84pg/m3,平均值为66.34pg/m3.大气中PBDEs在冬季污染最严重,颗粒相PBDEs季节变化趋势与总悬浮颗粒(TSP)较为相似,气相PBDEs的季节变化没有颗粒相明显.对PBDEs的总浓度、气相浓度、颗粒相浓度与采样期间气象因素做偏相关分析,发现总浓度和颗粒相浓度均与气压呈显著正相关,与温度呈显著负相关,表明西安大气中PBDEs浓度主要受气压和温度的影响.对西安普通人群的PBDEs吸入暴露量进行计算,并采用BDE-99的吸入量进行人体暴露评估,西安普通儿童和成人对BDE-99总摄入量低于De Winter-Sorkina提出的最大允许摄入量260pg/(kg·d).  相似文献   
54.
松花江哈尔滨段城市水环境质量评价   总被引:7,自引:0,他引:7       下载免费PDF全文
为了科学地对松花江哈尔滨段水环境质量进行评价,基于水环境功能区划,采用灰色关联度法将其分为4个区域,运用主、客观相结合的方法分区域建立相应的评价指标体系,使用模糊综合评价法进行水质评价,同时,验证指标体系构建的合理性.结果表明:构建的指标体系能够反映研究对象水环境质量;除阿什河口内水质评价结果为V类,达不到水环境功能区划要求外,其他区域水质均能达标.研究结果将有利于促进水资源的科学管理和有效利用,研究方法可为水环境质量评价提供新的思路.  相似文献   
55.
利用响应面法优化生物淋滤飞灰处理条件的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用响应面法进行试验设计,选定蔗糖初始浓度、黑曲霉孢子浓度、投加的飞灰浓度以及飞灰投加时间作为影响因素,对生物淋滤城市生活垃圾焚烧飞灰的处理条件进行优化.通过响应面法,得到飞灰中Cd、Cr、Fe、Mn、Zn及重金属总量与4种因素之间的非线性回归方程,确定了生物淋滤的最适条件范围:蔗糖初始浓度为114~126g/L;黑曲霉孢子浓度为(1.6~2.1)×107个/mL;飞灰浓度为29~39g/L;飞灰投加时间为3.6~4.4d.在最适条件下,70g/L飞灰经20d生物淋滤后,溶出重金属总浓度降为901mg/L,占飞灰中重金属总量的41%,处理后飞灰的重金属浸出毒性远低于国家标准.  相似文献   
56.
本文建市了一种水杨酸分光光度法,用于一氯胺的测定.结果表明,在水杨酸为1.0ml,硝普钠为0.10ml,pH值为11.8和反应时间为60min时,方法效果最好,吸光度与一氯胺具有很好的线性关系(R2=0.9999).一氯胺的回收率为100±5%.水中其它共存离子,如SO,,4>2-,PO43-,ca2+,Mg2+等在常见浓度范围内均不影响一氯胺的定量.方法检出限为0.02mg·1-1,对不同浓度标样的测定表明,相对标准偏差<10%,自来水本底中的加标回收率为96.0%-103.5%.  相似文献   
57.
基于能源回收的城市污水厌氧氨氧化生物脱氮新工艺   总被引:6,自引:3,他引:3  
卢健聪  高大文  孙学影 《环境科学》2013,34(4):1435-1441
采用"甲烷化+半亚硝化+厌氧氨氧化自养脱氮"新工艺,实现了生活污水能源质回收及氮素低碳化去除.结果表明,联合工艺出水NH4+-N≈0,NO2--N≤0.5 mg.L-1,NO3--N平均为3.6 mg.L-1,溶解性COD<10 mg.L-1,去除率高达98%.其中采用升流式厌氧污泥固定床(UAFB)实现甲烷化,能去除80%以上的进水溶解性COD,甲烷平均日产气量为3.3 L,产气量与COD去除量之间的关系为0.3 L.g-1,39.2%的进水溶解性COD转化为CODCH4,只有6.52%转化为CODVFAs.采用序批式反应器(SBR)实现半亚硝化,亚硝化累积率达到97%,出水基本达到厌氧氨氧化进水基质配比(NH4+-N∶NO2--N=1∶1.13),半亚硝化的主要作用是转化NH4+-N,转化率为36.59%.厌氧氨氧化(ANAMMOX)反应器氨氮去除量、亚硝态氮去除量和硝态氮生成量之比为1∶1.18∶1.25,总氮容积去除负荷为0.62 kg.(m3.d)-1,对氮素去除的贡献率为56.91%,为氮素脱除的主导工艺环节.新工艺通过厌氧产甲烷实现能源质回收,并通过亚硝化-厌氧氨氧化实现自养脱氮,为现有城市污水处理厂工艺改造提供了一种新的思路和技术.  相似文献   
58.
王硕  于水利  付强  徐巧  李激 《环境科学学报》2015,35(6):1779-1785
含油废水中因含有较高浓度的油脂类物质和聚合物而对环境造成危害,威胁人类健康,同时,为解决采用传统膜分离工艺运行成本较高的难题,开展了基于好氧颗粒污泥技术的含油废水处理研究.结果表明,以含油废水启动反应器,经35 d好氧颗粒污泥培养成熟,COD和溶解性油的去除率高达86.0%和94.2%;在絮状污泥颗粒化过程中,污泥胞外聚合物中蛋白质类物质含量提高3.7倍,蛋白质类物质与多糖类物质比值升高到2.72,证明胞外聚合物内蛋白质类物质浓度增加是活性污泥颗粒化的重要因素;好氧颗粒污泥荧光光谱结果显示好氧颗粒污泥中蛋白质类物质的稳定存在是好氧颗粒污泥形成的重要因素.选取好氧颗粒污泥技术处理含油废水的效果和成本均优于常规生物处理工艺和膜分离工艺,由于污泥及其胞外聚合物中多糖类和蛋白质类物质含量均较高,适用于回收污泥资源,对含油污泥的资源化利用意义重大.  相似文献   
59.
响应曲面法优化均相Fenton深度处理皮革废水   总被引:7,自引:3,他引:4  
均相Fenton深度处理皮革废水,试验用水为A/O反应池的出水,COD介于180~200mg·L-1.基于Box-Behnken响应曲面法,考察了初始pH值、H2O2/Fe2+摩尔比、过氧化氢投加量、反应时间的单独作用及交互作用,并建立COD去除率数学模型,结果表明:影响因子显著性顺序为:pH>H2O2投加量>反应时间>H2O2/Fe2+摩尔比,初始pH值与H2O2投加量的交互作用显著;数学模型回归性较好,预测最大COD去除率为55.87%,最佳条件组合为:pH=4.0,H2O2投加量=14.00mmol·L-1,H2O2:Fe2+=10.6:1,Time=3h及T=25℃,验证试验结果为53.35%,与预测值相比偏差为4.51%.采用均相Fenton深度处理皮革废水,可以满足《污水综合排放标准》(GB8978—1996)一级标准中对COD≤100mg.L-1的限制要求.  相似文献   
60.
活性污泥低温氨氧化功能的驯化与潜力研究   总被引:1,自引:0,他引:1  
以强化低温污水生物处理系统的氨氮(NH4+-N)氧化功能为目标,采用序批式活性污泥反应器(SBR),通过逐步提高进水NH4+-N浓度的方式,在(15±1)℃的条件下对城镇污水处理厂的好氧活性污泥进行了驯化培育,并就其对生活污水和高氨氮废水的NH4+-N去除潜力进行了测试.结果表明,在(15±1)℃下,好氧活性污泥经适当驯化可获得良好的氨氧化能力.在初始NH4+-N浓度为46mg·L-1左右时,其NH4+-N去除速率和亚硝态氮(NO2--N)生成速率分别可达54.26g·kg-·1d-1(以MLSS计,下同)和29.07g·kg-·1d-1(以MLSS计,下同)左右.对NH4+-N浓度为47.19mg·L-1左右的城镇污水,其NH4+-N去除率可高达85%以上.初始NH4+-N浓度分别为91.01mg·L-1和163.37mg·L-1左右时,其最高NH4+-N去除速率分别可达52.54g·kg-·1d-1和111.97g·kg-·1d-1,具有处理高氨氮废水的潜力.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号