首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   9篇
综合类   13篇
基础理论   1篇
污染及防治   1篇
灾害及防治   5篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  1992年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
基于轨迹模式分析海口市大气污染的输送及潜在源区   总被引:3,自引:0,他引:3  
基于2013—2018年海口市空气质量资料,利用HYSPLIT模式和美国国家环境预报中心(NCEP)提供的FNL资料,模拟近6年海口市500 m高度气流48 h的后向轨迹,分析了不同季节气流轨迹分布、聚类分析和潜在源区分布概率(WPSCF)特征.结果表明:近6年海口市的空气质量等级主要以优和良为主,占所有天数的97.1%,有2.9%的天数达到了轻度污染及其以上级别,O_3从2015年开始成为海口市最主要的大气污染物.海口市影响气流有明显的季节变化,冬季主要受内地的大陆气流和东南沿海气流影响,春季和秋季以东南沿海气流为主,夏季多为来自西南方向的海洋性气流.气流轨迹和WPSCF的空间分布均表明,广东省是海口市大气污染物超标的主要贡献源区,此外,福建、江西、湖南和广西东部等地的潜在贡献也较大.  相似文献   
12.
海口市作为我国著名的热带滨海城市之一,地理环境特殊,气候资源独特。为深入认识海口市臭氧(O3)污染变化规律及污染物潜在贡献源区,也为进一步开展O3污染预报预警和区域联防联控提供技术支撑,利用海口市区4个环境监测数据,结合气象观测资料,采用后向轨迹模拟、聚类分析、多元回归分析法、潜在源区贡献因子算法和权重轨迹方法分析了海口市最大8 h平均(O3-8h)质量浓度年际变化、月际变化、日变化及与气象影响因子的关系,影响O3-8h质量浓度的主控因子,并探讨了O3传输路径和潜在贡献源区。结果表明,2013—2020年海口市区4个站点O3-8h质量浓度均出现不同程度的上升,其中龙华站的趋势系数达到了0.929,通过了99.9%的信度检验;O3-8h质量浓度月际变化呈“V”型分布,最大值出现在10月;日变化呈单峰型,峰值出现在15:00附近;平均气温在18—28℃之间,相对湿度位于65%—80%,太阳辐射日总量在6—23 MJ·m-2  相似文献   
13.
利用海口市PM_(2.5)逐时数据、常规气象观测资料、FNL全球分析资料和HYSPLIT模式,对比分析海口市PM_(2.5)变化特征及其与气象因素的关系。结果表明:(1)2014年1月1日至2016年6月30日,海口市PM_(2.5)日均值以达到《环境空气质量标准》(GB 3095—2012)一级标准为主;年均值为23μg/m~3,达到GB 3095—2012二级标准;月均值整体呈周期性波动,秋冬季高、春夏季低;季节均值排序为冬季秋季春季夏季。(2)降水对PM_(2.5)有清除作用;风速加大会使PM_(2.5)浓度减小。(3)污染个例分析表明,海口市PM_(2.5)浓度增大,是因为东北风将外地污染物传输经过本地,并配合有利的天气形势,最终造成大气污染事件的发生。  相似文献   
14.
利用海口多普勒天气雷达、闪电定位和日本静止卫星0.05°×0.05°TBB资料,对1117号强台风"纳沙"造成的海南岛暴雨的中尺度特征进行了分析。结果表明:台风暴雨分布特征与TC环流和地形增幅密切相关;明显的辐合性暖平流和"列车效应"有利于暴雨的持续;最大回波强度和小时雨量间有很好的对应关系,建议了海口多普勒雷达TC估测降水产品使用公式Z=230R1.25;海南岛强降水时段TBB值普遍小于-70℃,但仍属于降水效率高的弱对流;西半部地区强降水出现时间与中尺度对流云团对应较好,而东半部地区中尺度对流云团的发展则超前于强降水出现时间。  相似文献   
15.
为了探讨2017年10月海南省一次O3污染过程的气流轨迹、输送路径和潜在源区,采用海南省18个市县的AQI值、6类大气污染物质量浓度资料以及相关气象观测资料,结合HYSPLIT后向轨迹模型进行分析.结果表明:①2017年10月海南省有13个市县首要污染物为O3的天数比例超过80%,其中9个市县达100%.2017年10月26日澄迈县和儋州市AQI值分别为171和151,均达中度污染等级,7个市县达轻度污染等级.②气象要素与AQI和污染物质量浓度之间均存在较好的相关关系,ρ(O3)、AQI与相对湿度的相关系数分别为-0.701和-0.685,均通过了99.9%的信度检验.③卫星反演结果表明,此次污染过程与外源输送关系密切.影响气流主要来自内陆地区的长距离气流、中短距离气流和来自东南沿海的中短距离气流,三支气流影响时段对应的海口市AQI值分别为83、69和61,对应的ρ(O3)分别为和135.0、119.6和102.3 μg/m3.④通过计算PSCF(潜在源贡献因子)和CWT(浓度权重轨迹)发现,广东省为海南省的主要潜在贡献源区,湖南省、江西省、江苏省、浙江省和福建省等地区也有一定的潜在贡献.研究显示,2017年10月海南省出现的O3污染过程中,污染物来源以外源输送为主.   相似文献   
16.
针对2007年7月8日发生在苏皖淮河流域的暴雨,采用WRF中尺度数值模式模拟结果、FNL每日4次1°*1°再分析资料、6h地面实况观测降水资料和FY-2相当黑体亮温TBB资料对该次降水的发生、发展过程进行了分析研究。结果表明:(1)该次降水在有利的大气环流形势下,强降水发生在呈准东西向分布的梅雨锋上。位于蒙古国与我国华北—东北交界处上空的切断低压给淮河流域输入了冷空气。冷空气与西南低空急流带来的暖湿气流交汇,增强了大气斜压性;(2)正的非热成风涡度的发展促进了高层相对于低层的辐散减压,有利于垂直上升运动的发展;(3)低空强急流带所形成的动力、热力和水汽条件对暴雨落区位置产生了重要影响。  相似文献   
17.
2014年海口市大气污染物演变特征及典型污染个例分析   总被引:2,自引:0,他引:2  
主要分析了2014年海口市逐日的空气质量指数(AQI)和6种大气污染物的演变特征,同时,结合卫星遥感和轨迹模式等资料和方法对1次典型污染个例进行诊断.结果表明:海口市2014年的空气质量主要以优和良为主,6 d达到轻度污染级别,1 d达到中度污染(1月5日,AQI值为158).1月污染最为严重,其中,阶段1(1-6日)和阶段3(18-23日)AQI值偏高,阶段2(7-17日)和阶段4(24-31日)偏低.1月东亚地区天气形势演变对海口市AQI值具有动力影响.AQI偏高阶段,地面高压系统位于内蒙古东部,华南低层东北风场有利于污染物向海口市输送;而在AQI偏低阶段,地面高压系统东移出海,低层偏东风场不利于污染物的输送.后向轨迹聚类分析表明,1月海口市比率最大(39%)的气流主要经过大气污染相对严重的广东珠江三角洲(珠三角)地区,有利于污染物的区域传输.污染个例分析表明,海口市污染物浓度变化与气象要素有密切关系,10 m风速较小有助于近地面的污染物在区域内累积,水平风垂直切变偏弱对天气尺度扰动的发展和大气的垂直混合不利.卫星遥感和后向轨迹分析也表明,外源输送与海口市这次大气污染事件有直接关系.  相似文献   
18.
海口市在2013年12月份发生了一次气溶胶粒子污染事件.本文利用相关资料对此进行诊断,发现海口市PM2.5在12月9日超过了国家环境空气质量二级标准限值,在11日达到该污染时段的最高值(日平均为87.96μg·m-3),同时与能见度有一定的负向关系.分析表明,前期(7—9日上午),污染物主要以本地排放为主,而后期(9日中午到11日)与珠江三角洲地区的输送作用有密切关系,后向轨迹分析也表明后期海口市大气污染物可能来自珠三角地区.分析发现,气象背景场为这次气溶胶污染事件提供了有利的气象条件,500 h Pa高度场冷空气活动偏北,925 h Pa高度场的暖中心控制,形势稳定,逆温层的存在使得大气近地层更加稳定,低层风速偏小不利于近地面附近的污染物向外输送,水平风垂直切变偏弱有利于污染物在近地层堆积,其变化趋势与PM2.5浓度有一定的相关性.  相似文献   
19.
周砚耕 《灾害学》1992,7(1):59-60
“气象灾害”在海南岛可谓灾害之首,在首害当中应属台风灾害为最。每年5~10月台风季节海南岛均受到不同程度的影响并带来灾害,特别是1973年9月7314号台风给海南岛东部的琼海县以毁灭性的破坏。 1 移动路径及强度 7334号台风,9月12日由菲律宾以东洋面移入南海东部海面后,由热带低压逐渐加强,13日中心附近最大风力增强到12级,并直向西移,于9月14日晨4~5时在海南岛东部琼海县博敖港地区登陆。以后继续向偏西方向移动,穿过海南岛中部,14时左右台风中心由海南岛西  相似文献   
20.
符传博  陈红  丹利  徐文帅 《环境科学》2022,43(11):5000-5008
基于2019年秋季海南省空气质量和气象监测数据,结合相关分析、HYSPLIT后向轨迹模型、PSCF (潜在源贡献因子)和CWT (浓度权重轨迹)等分析方法对海南省4次O3污染过程特征及潜在源区进行深入分析.结果表明:①过程1和过程3分别发生在9月21~30日和11月3~11日,持续时间达到了10 d和9 d,ρ(O3-8h)(最大8 h平均)分别为145.52 μg ·m-3和143.55 μg ·m-3.过程2和过程4出现在10月18~21日和11月20~25日,持续时间为4 d和6 d,ρ(O3-8h)分别为130.79 μg ·m-3和115.46 μg ·m-3.②气压偏高,降水偏少,相对湿度偏低,日照时数偏长和太阳辐射偏强,是造成海南省出现O3污染天气的有利气象条件.偏北风风场控制下有利于O3-8h浓度上升,不同风速大小会影响海南省O3-8h浓度高值区分布.③ O3污染较为严重的过程1和过程3的影响气流发散度较大,有来自内陆地区和东南沿海地区两支气流,而O3污染较轻的过程2和过程4的影响气流较为集中,多为东南沿海气流.④潜在贡献源区分析表明,浙江省、江西省、福建省和广东省等地是2019年秋季海南省O3污染外源输送的主要源区,其中珠三角地区和广东省西部WPSCF值和WCWT值分别为大于0.36和大于90 μg ·m-3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号