首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   4篇
  国内免费   7篇
安全科学   257篇
废物处理   1篇
环保管理   12篇
综合类   94篇
基础理论   4篇
污染及防治   21篇
评价与监测   23篇
社会与环境   5篇
  2023年   20篇
  2022年   4篇
  2021年   23篇
  2020年   15篇
  2019年   8篇
  2018年   1篇
  2017年   3篇
  2016年   11篇
  2015年   35篇
  2014年   16篇
  2013年   21篇
  2012年   12篇
  2011年   12篇
  2010年   6篇
  2009年   10篇
  2008年   10篇
  2007年   30篇
  2006年   11篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   6篇
  2001年   19篇
  2000年   21篇
  1999年   22篇
  1998年   35篇
  1997年   12篇
  1996年   5篇
  1995年   12篇
  1994年   2篇
  1993年   7篇
  1992年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
411.
随着现代工业的发展,粉尘爆炸事故发生的频率也逐年增加,因此,对粉尘云点火敏感程度进行测量和计算就变得十分重要。粉尘云最小点火能是粉尘爆炸重要的特性参数之一,是采取粉尘爆炸防护的基础。最小点火能在测量的过程中受到多个敏感条件的影响,其中湍流则是最复杂的影响因素之一。文中对实验过程中粉尘云的湍流进行了定义,并分析了湍流对粉尘云最小点火能影响的内在原因;同时对通过数值模拟计算粉尘云最小点火能过程中的湍流计算给出了数学模型。从实验和数学模型两个方向对湍流进行了全面描述,对粉尘云电火花点火过程中湍流影响的分析结论,可有效的指导实验。  相似文献   
412.
Dust monitoring using sticky pads was popularised in the 1980s. The discolouration caused by dust adhering to white adhesive material was measured with a smoke stain reflectometer. This loss of reflectance was expressed as the percentage effective area coverage (EAC%) per day. EAC% can be used as a measure of nuisance caused by dust. EAC% may also be measured with a hand-held Sticky Pad Reader (SPR). Sticky pads can be mounted on flat or cylindrical surfaces to measure dust by deposition or in flux. An alternative method was developed in the 1990s that measured total dust coverage using computer-based scanning. DustScan used a transparent adhesive film wrapped around a vertical cylinder with magnetic north marked. The sticky pad was sealed with another transparent sheet before scanning at 50 dots per inch (dpi). Dust levels were assessed by comparing the grey-scale values of pixels in the exposed area with an unexposed reference area. Insects and other extraneous material could be ‘masked out’ from the computer analysis. Dust coverage was expressed as percentage absolute area coverage (AAC%). DustScan has subsequently been developed commercially. A limited trial indicated that monitoring periods of 7–14 days were preferred to avoid dust saturation of the sticky pad. A method for calculating EAC% has been developed and shown to have a high degree of correspondence with an SPR. A trial for the Minerals Industry Research Organisation (MIRO) made comparisons between DustScan and other dust monitoring methods. Dust nuisance limits based on AAC% and EAC% are proposed.par  相似文献   
413.
我国西北典型大城市大气可吸入颗粒物浓度分布特征   总被引:7,自引:4,他引:3  
我国西北地区冬季寒冷、春季多风沙天气,空气中的可吸入颗粒物(PM10)浓度较高,利用兰州、西宁、乌鲁木齐、银川、呼和浩特等城市2000年6月~2007年12月每日浓度最高的大气主要污染物(SO2,NO2,PM10)浓度资料,研究了5个省会城市PM10分布特征。结果表明,五个城市PM10污染都较严重,PM10为主要污染物的日数每月平均超过20天。五个城市的季节分布特征类似,冬春季浓度较高,平均值都达到了国家二级污染标准,夏秋季相对低一些。其中,兰州和乌鲁木齐冬季浓度值远高于其他城市。五个城市均属煤烟沙尘型污染,但煤烟和沙尘的影响程度有所不同。  相似文献   
414.
Characteristics of coal mine ventilation air flows   总被引:2,自引:0,他引:2  
Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.  相似文献   
415.
The risk assessment of combustible explosive dust is based on the determination of the probability of dust dispersion, the identification of potential ignition sources and the evaluation of explosion severity. It is achieved in most of cases with the two main experimental normalized devices such as the Hartmann tube (spark ignition) and the 20 L spherical bomb (with two 5 kJ pyrotechnic ignitors).Ignition energy of the 5 kJ ignitor is well calibrated and generates a reproducible ignition. But, on the other hand, this ignition is not punctual and the over pressure produced is nearly 2 bar. Moreover, the pyrotechnic igniter accelerates the combustion with multi ignition points in a large volume and that disturbs the flame propagation. In this way, this ignition source does not allow to analyze the combustion products because the composition of the pyrotechnic igniter was found in the combustion products.This paper deals with the comparison of two ignition sources in the 20 L spherical bomb. Different explosive dusts of great industrial interest are studied with electrical and pyrotechnic ignitors, in order to understand, first, the influence of each type of igniter on the explosion behaviour and then to evaluate the possibility of establishing a correspondence between parameters obtained with these two ignition sources.Severity parameters of nicotinic acid, aluminium powder and titanium alloy were measured by using the two types of ignition system in our 20 L spherical bomb equipped with the Kühner dihedral injector. The explosion overpressure P and the rate of pressure rise (dPdt) were measured in a large range of concentration allowing to propose correlations between electrical and pyrotechnic ignition for each parameter and each type of powder. These correlations aim to link the tests used with two different collections of experimental parameters for the same dust. The relevance of these correlations will be discussed.  相似文献   
416.
The present study discusses experiments on organic dust explosions in a setup with low wall influence. The proposed apparatus decouples the dust dispersion and the deflagration event in two separate compartments. The use of a continuous-wave laser to illuminate the centre plane of the observation chamber allows capturing both, the dust cloud and the flame during the same experiment and eliminates typical problems caused by the limited dynamic range of high-speed cameras. A k-means clustering method is used for image segmentation to obtain the spatial extent and the propagation velocities of the unreacted particle cloud and the flame zone. Spatially resolved velocities are calculated by the additional use of an optical flow method. The main goal of the presented setup and image processing method is to provide high quality validation data for the development of numerical models on dust deflagration.  相似文献   
417.
This paper presents a numerical model for the prediction of the minimum ignition temperature (MIT) of dust clouds. First, a physical model is developed for the dust cloud ignition in the Godbert-Greenwald furnace. A numerical approach is then applied for the MIT prediction based on the physical model. The model considers heat transfer between the air and dust particles, the dust particle reaction kinetics, and the residence times of dust clouds in the furnace. In general, for the 13 dusts studied, the calculated MIT data are in agreement with the experimental values. There is also great accordance between the experimental and numerical MIT variation trends against particle size. Two different ignition modes are discovered. The first one consists in ignition near the furnace wall for bigger particles characterized by rather short residence times. In the second mode, the ignition starts from the center of the furnace by self-heating of the dust cloud for smaller particles with longer residence times. For magnesium, as dust concentration increases, the lowest ignition temperature of the dust cloud IT(conc) decreases first, then transits to increase at a certain point. The transition happens at different dust concentrations for different particle sizes. Moreover, the MIT of the magnesium dust cloud generally increases as particle size increases, but the increasing trend stagnates within a certain medium particle size range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号