首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   58篇
  国内免费   82篇
安全科学   18篇
废物处理   3篇
环保管理   44篇
综合类   264篇
基础理论   15篇
污染及防治   8篇
评价与监测   22篇
社会与环境   14篇
灾害及防治   10篇
  2024年   10篇
  2023年   31篇
  2022年   27篇
  2021年   45篇
  2020年   38篇
  2019年   50篇
  2018年   35篇
  2017年   30篇
  2016年   28篇
  2015年   24篇
  2014年   42篇
  2013年   12篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
  1994年   1篇
  1991年   1篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
111.
《环境保护》2014,(18):42-48
国家环境咨询委员会与环境保护部科学技术委员会(以下简称"两委")第八次全体委员会议近日在河北召开。环境保护部副部长吴晓青出席会议并讲话。会议通报了《国家环境保护"十三五"规划》编制总体思路以及学习贯彻实施新修订的《环境保护法》的对策措施。"两委"委员围绕"十三五"环保规划基本定位、总体思路、任务设计和保障措施,就如何贯彻实施落实好新修订的《环境保护法》等内容进行了热烈讨论。本刊特摘登部分参会"两委"委员发言,以飨读者。  相似文献   
112.
正始于城市极端天气作为全国大气治理计划风向标的北京,在2013年9月公布出台了《2013—2017年清洁空气行动计划重点任务分解的通知》措施。但笔者细观后发现,依赖煤炭的能源消费及重工业扩张,使京津冀地区PM2.5难以有实质性减少,京津冀2020年空气质量或将难以达标。2013年9月初,世界银行和经合组织发布最新研究报告:"由气候变化导致的海平面上升使全球沿海城市面临洪水泛滥的危险。"报告警示,如果全世界洪灾风险最大的沿海城市不采取必要应对之策,到2050年洪灾造成的损失总额可  相似文献   
113.
选取京津冀及周边区域2018年11月23日至12月4日一次大范围、长时间且PM_(2.5)叠加两次沙尘传输的复合型重度污染过程开展特征研究,分析了首要污染物PM_(2.5)和PM_(10)浓度的发展演变,以及污染气象影响因素;结合激光雷达地基和车载走航监测结果,以及HYSPLIT后向轨迹结果,讨论了区域污染传输的情况;并对重污染期间NAQPMS、CMAQ和CAMx这3个空气质量模式的预报效果进行了回顾分析.结果表明,研究时段PM_(2.5)叠加两次沙尘传输导致区域中南部多数城市达到重至严重污染水平,张家口、北京、石家庄、邯郸和郑州PM_(10)小时峰值分别为1 589、864、794、738和766μg·m~(-3),PM_(2.5)小时峰值浓度分别为239、319、387、321和380μg·m~(-3).地面弱气压场、高湿、逆温等静稳条件和沙尘是重要的污染气象和天气因素.激光雷达地基和车载走航监测数据结合HYSPLIT后向轨迹分析表明重污染期间区域西南和东南方向发生了PM_(2.5)传输;区域两次沙尘过程主要受西北路径传输影响.此外,NAQPMS、CMAQ和CAMx这3个模式均可较好地预测到京津冀及周边区域的重污染过程,但对个别城市预报略有偏差.该次重污染过程中模式对PM_(2.5)的预报效果要好于PM_(10),这与气象模式预报、大气化学反应机制、污染源清单的不确定性,以及重污染应急措施导致的污染源排放的改变有一定关系.  相似文献   
114.
京津冀区域PM2.5污染相互输送特征   总被引:2,自引:1,他引:1  
王燕丽  薛文博  雷宇  王金南  武卫玲 《环境科学》2017,38(12):4897-4904
基于CAMx-PSAT空气质量模型,对2015年京津冀区域PM_(2.5)污染及相互输送特征进行定量模拟,建立了京津冀13个城市的PM_(2.5)传输矩阵.结果表明,在年均尺度上京津冀区域PM_(2.5)以本地污染源贡献为主(21.49%~68.74%),传输贡献为辅,其中区域内传输贡献约为13.31%~54.62%,区外贡献约为13.32%~45.02%.PM_(2.5)传输特征呈现显著的时空差异性,区域中部城市唐山、北京、天津、保定和石家庄PM_(2.5)受本地贡献主导,在冬季尤其明显,而受传输影响较大的城市多分布在区域边界且在南部集中.区内作为汇的城市有廊坊、衡水、承德、秦皇岛和邢台,作为源的城市有天津、沧州、唐山、北京、石家庄和邯郸,张家口和保定对区内城市输出和受区内输入基本持平.典型城市分析证明城市间PM_(2.5)污染交互影响,北京与廊坊、保定、承德、天津和沧州等城市之间,天津与廊坊、唐山、北京、沧州和保定等城市之间,石家庄与邢台、衡水、保定、邯郸和廊坊之间均存在显著的PM_(2.5)相互输送.  相似文献   
115.
2008~2011年夏季京津冀区域背景大气污染变化分析   总被引:17,自引:4,他引:13  
杨俊益  辛金元  吉东生  朱彬 《环境科学》2012,33(11):3693-3704
2008~2011年夏季京津冀区域大气背景兴隆站大气污染观测结果表明,4 a夏季NOx的平均浓度分别为(9.1±5.1)、(5.9±2.6)、(12.2±4.6)、(14.1±5.0)μg·m-3,O3日小时最大浓度平均分别为(163.3±42.7)、(175.2±48.8)、(199.6±52.6)、(207.2±62.1)μg·m-3,PM2.5的平均浓度分别为(59.8±44.6)、(44.4±28.0)、(58.1±34.2)、(52.5±36.7)μg·m-3;其中,2010年污染物上升的幅度最大,NOx、O3、PM2.5平均浓度比2009年分别上升了106%、14%、31%.2010年京津冀地区机动车保有量的激增以及工业的快速发展,使得京津冀地区背景大气污染物浓度显著上升.区域大气氧化性同样显著升高,2010年Ox比2009年上升了20%,达到(155.3±40.2)μg·m-3,区域高浓度臭氧与高浓度细粒子大气复合污染正在进一步加剧.  相似文献   
116.
本研究利用中国地区污染物浓度和气象再分析数据集,分析“十三五”(2016—2020年)期间京津冀地区PM2.5污染趋势和大气环境容量系数的时空分布特征.结果表明,近年来京津冀地区空气质量不断改善,PM2.5年均浓度在2016年(61μg·m-3)—2020年(45μg·m-3)间逐年降低.对这期间京津冀地区边界层高度、风速以及干、湿沉降速度的分析发现,京津冀地区年均大气环境容量系数呈上升趋势,表明该区域大气扩散条件逐渐好转,利于污染物的稀释和扩散.大气环境容量系数呈现春季高、秋季低的分布特征,峰值出现在15:00左右,2020年的年均大气环境容量系数超过3000 m2·s-1.研究结果对于了解京津冀地区大气扩散条件的改变以及加强对空气污染成因的理解具有借鉴意义.  相似文献   
117.
促进生态产品的价值实现是国土空间规划难以回避且亟需探索解决的问题。厘清国土空间规划框架下耕地占补平衡向生态占补平衡转型的制度演进逻辑,尝试构建基于“生态券”的生态产品市场化交易机制,并以京津冀地区为例开展实证。结果显示:(1)国土空间规划为核定“生态券”提供了制度基础,“生态券”交易可弥补因国土空间规划而导致的土地发展权的损失。(2)“生态券”是区域生态用地保护量在基准年和目标年的变化量,提出以县级地方政府为交易主体、由国家年度计划管理确定交易总量、采取政府确定底价和市场定价相结合的交易机制。(3)将生态用地类型确定为林地、草地、湿地与水域四类,使用区域自然条件、GDP和人口密度校正后计算的“标准林”面积核算该区域“生态券”。(4)2010—2018年,京津冀“生态券”需求量为142.02×104hm2,主要为海淀、西青、津南、武清、昌黎等地;供应量为74.73×104hm2,主要来自房山、赵县、兴隆、隆化、承德等地。研究结果为生态产品价值实现提供了新思路和相对简单易操作的方法,可以为国土空间规划及...  相似文献   
118.
为了解京津冀及周边地区“2+26”城市PM2.5和O3复合污染时空分布特征,利用ArcGIS和SPSS软件对2015~2021年京津冀及周边地区“2+26”城市空气质量数据和气象数据进行关联性分析.结果表明:(1) 2015~2021年PM2.5污染持续减缓,污染集中在区域中南部;O3污染呈波动上升趋势,空间分布呈现“西南低,东北高”的格局.季节变化来看,PM2.5浓度主要为:冬季>春季≈秋季>夏季,O3-8h浓度为:夏季>春季>秋季>冬季.(2)“2+26”城市PM2.5超标天数持续下降,O3超标天数波动上升,复合污染日下降趋势显著;PM2.5和O3污染在夏季呈强正相关,相关系数最高达0.52,冬季呈强负相关.(3)对比典型城市臭氧污染时期与复合污染时期气象条件,复合污染发生的温度区间集中在23.7~26.5℃、湿度48%~65%和S~S...  相似文献   
119.
利用京津冀及周边地区大气污染综合立体监测网,在京津冀大气污染传输通道城市(“2+26”城市)开展了PM2.5及其化学组分长期连续观测,并对数据进行深入分析.结果表明:①2017年、2018年和2019年采暖季“2+26”城市PM2.5浓度平均值分别为(84±62)(95±63)和(80±61)μg/m3,达到了京津冀及周边地区2019—2020年秋冬季PM2.5平均浓度同比下降4%的目标;与PM2.5浓度变化相似,其主要化学组分——有机物(OM)浓度最大值出现在2018年采暖季,但二次无机盐(硝酸盐、硫酸盐和铵盐)浓度呈逐年上升趋势,而元素碳、氯盐、地壳物质和微量元素浓度均呈逐年下降趋势.②OM、硝酸盐、硫酸盐、铵盐、地壳物质、元素碳、氯盐和微量元素浓度空间分布存在明显差异.受污染物排放、气象条件以及地形因素的共同影响,PM2.5及其化学组分浓度高值区主要出现在太行山传输通道城市(保定市、石家庄市、邢台市、邯郸市、安阳市和新乡市).③不同空气质量状况下,“2+26”城市PM2.5化学组分浓度年际变化相似,即随空气污染的加重,硝酸盐、硫酸盐和铵盐占PM2.5的比例均上升,而OM占比下降.研究显示,采暖季“2+26”城市空气质量总体得到改善,但需进一步加强对PM2.5中二次组分的科学管控.   相似文献   
120.
为研究京津冀地区臭氧浓度的时空变化,文章利用2014年6月-2018年5月中国环境监测总站臭氧浓度数据进行分析。结果表明:(1)京津冀地区臭氧浓度平均水平不断增高,不同区域增速差异明显,高值区出现由单中心向双中心的转变且逐渐形成了日益明显的沿海臭氧高浓度分布带;(2)臭氧浓度的季节性差异显著,春、夏两季较秋、冬两季臭氧浓度高,其中夏季最高,冬季则缺乏高值区;(3)不同城市的年均臭氧浓度分布模式不同,大部分城市核密度估计峰值对应臭氧浓度20μg/m~3;(4)臭氧浓度的日内变化基本遵循周期性单峰型变化规律;(5)不同城市臭氧浓度超标天数差异显著,变化趋势可分为稳定增长型、突变增长型和稳定型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号