首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   61篇
  国内免费   196篇
安全科学   84篇
废物处理   102篇
环保管理   49篇
综合类   471篇
基础理论   67篇
污染及防治   185篇
评价与监测   26篇
社会与环境   1篇
灾害及防治   3篇
  2024年   2篇
  2023年   14篇
  2022年   8篇
  2021年   17篇
  2020年   11篇
  2019年   23篇
  2018年   14篇
  2017年   19篇
  2016年   31篇
  2015年   37篇
  2014年   60篇
  2013年   40篇
  2012年   62篇
  2011年   46篇
  2010年   46篇
  2009年   43篇
  2008年   48篇
  2007年   40篇
  2006年   64篇
  2005年   38篇
  2004年   37篇
  2003年   49篇
  2002年   35篇
  2001年   21篇
  2000年   24篇
  1999年   19篇
  1998年   8篇
  1997年   29篇
  1996年   23篇
  1995年   16篇
  1994年   21篇
  1993年   14篇
  1992年   3篇
  1991年   6篇
  1990年   6篇
  1989年   10篇
  1988年   3篇
  1986年   1篇
排序方式: 共有988条查询结果,搜索用时 46 毫秒
41.
为有效去除水中Cd(Ⅱ),以TiO2纳米粉和NaOH为原料,调节水热反应温度分别为100、120、150和190℃,制备出了不同形貌的TNs(钛酸盐纳米材料),分别记为TNs-100、TNs-120、TNs-150和TNs-190,并对其形貌、结构、比表面积、化学组成等物理化学性能进行了表征;通过对水中Cd(Ⅱ)的静态吸附试验,考察了TNs对Cd(Ⅱ)的吸附性能.结果表明:随着合成温度的升高,TNs的形貌逐渐从纳米片演变成纳米管,管长逐渐变长,最后变成纳米棒.TNs-100的晶型结构主要是锐钛矿型;随着温度升高,结晶度逐渐增强;TNs-190出现了部分金红石相.TNs-150对Cd(Ⅱ)的吸附能力最强,最大平衡吸附量为254.66 mg/g,最佳吸附pH为5.0.再生的TNs-150对Cd(Ⅱ)循环吸附6次的去除率和解吸率均可达93%以上.TNs-150对Cd(Ⅱ)的吸附过程符合准二阶动力学方程和Langmuir吸附等温模型,吸附机制主要是TNs层间Na+和H+与溶液中Cd(Ⅱ)的离子交换.研究显示,TNs的饱和吸附量均高于同类吸附剂,能有效去除水中Cd(Ⅱ).   相似文献   
42.
土壤富里酸(fulvic acid,FA)是土壤腐殖质中分子量最小的重要组分,影响着重金属等环境污染物的迁移转化和生物有效性。FA的提取和分级是研究其分子结构、化学性质及环境行为的前提条件。综述了XAD树脂吸附技术在提取和分级土壤FA中的应用,并对该技术的改进方向提出建议。通过列举实例,简述了FA的环境学意义,论述了FA提取纯化过程的影响因素,对比讨论了单一和复合性质洗脱液在XAD树脂分级富集FA过程中的应用。  相似文献   
43.
总结当前离子交换膜制备技术的发展状况.从膜的分类及膜性能出发,讨论均相膜及异相膜的差异和今后各自的发展前景,并就提升膜单方面性能(如:选择透过性、离子交换容量、膜电阻、抗氧化性等)的方式进行归纳总结.离子交换膜的改进制备大多从结构上入手,提出今后膜制备的主要研究方向为:深化均相膜制备技术、结合国内成熟的离子交换树脂制备工艺改进异相膜的制备技术.  相似文献   
44.
利用表面负载的方法将有机化磁性凹土与苯乙烯、二乙烯苯等制备磁性凹土树脂;对磁性凹土树脂进行氯甲基化改性,制备出氯化磁性凹土树脂.表征了样品的形貌、结构以及表面积,研究了树脂对天然有机物(腐殖酸)的吸附性能.结果表明:氯化后的磁性凹土树脂的比表面积是原有的1.9倍,对附腐殖酸的饱和吸附能力也从原有的41.84 mg/g提高到了51.02 mg/g,这表明改性后的树脂增强了其对腐殖酸的去除能力.  相似文献   
45.
采用阳离子交换树脂颗粒为催化剂载体采用浸渍法负载二价铁离子,制备出非均相Fenton反应催化剂,并用该非均相Fenton催化剂氧化脱色亚甲基蓝溶液,考察其催化性能。实验结果表明:制备催化剂时最佳FeSO4浓度为16.67 mmol/L,pH=3.0,H2O2初始浓度为46.6 mmol/L,反应时间为30 min的条件下,亚甲基蓝溶液初始浓度为0.028 mmol/L时,亚甲基蓝溶液在非均相Fenton催化氧化过程中,其脱色率可达92.9%。采用序批形式反应使用5次后,该非均相催化剂仍有良好的催化效果,反应30 min后亚甲基蓝溶液脱色率仍可达85.2%,拓宽了Fenton技术的使用范围。  相似文献   
46.
原子吸收光谱法是分析环境水样中金属离子含量的有效方法之一。在测定时往往需要对样品进行前处理,然后再进行测定。文章介绍了近些年较新的一些分离富集技术在原子吸收光谱分析环境中金属离子时的应用,分析了离子交换树脂在样品中金属离子富集分离过程中的研究近况,评述了固相萃取、析相微萃取、单滴液滴微萃取、分散液液微萃取、离子液体萃取、浊点萃取等多种萃取方式在样品预富集中的应用进展,综述了活性炭、纳米粒子、淀粉、分子筛等吸附剂在富集环境水样中金属元素的应用现状,同时还对在线富集技术与流动注射分析技术联用在金属元素分析中的应用进展进行了评述。  相似文献   
47.
针对原有用于铜、铁、锌同位素分析的提纯步骤方法,我们专门对锌的提纯进行了改进,即在1mol/LHCl的介质条件下,采用200~400目AGMP-1M树脂提纯锌,大大简化了锌的提纯方法。在改进的实验条件下,地质样品的回收率接近100%;标准溶液在离子交换分离前后同位素组成一致,表明分离前后无Zn同位素分馏;全流程Zn的空白小于0.7ng/mL。此法可作为用于高精度Zn同位素分析的前处理方法。  相似文献   
48.
新型磁性聚谷氨酸吸附剂对水中Pb2+的吸附去除   总被引:2,自引:1,他引:1  
德岛大学安澤幹人首次利用γ-PGA在Fe3O4磁性纳米颗粒上进行涂层,制得了γ-聚谷氨酸-Fe3O4磁性纳米颗粒(PG-M).本实验利用透射电镜以及扫描电镜对PG-M吸附剂的形貌进行了分析,发现PG-M与未涂层的Fe3 O4具有相似的形状以及大小,均为不规则的层状结构,且晶粒直径在120~320 nm之间;实验中针对性地对水溶液中Pb2+进行了吸附探讨.在振荡实验中,通过主要参数的变化(pH值、吸附时间、竞争离子浓度、腐殖酸浓度),得到如下结果:吸附最佳pH值为7.0;吸附量随着吸附时间的延长而增长,吸附平衡时间为45 min;Na+对PG-M去除Pb2+没有很强的干扰性,而Ca2+则显示出一定的干扰作用;腐殖酸对吸附效果的影响是复杂的,表现为先增强吸附效果,随后降低吸附效果;最佳条件时Pb2+的最大吸附量为93.3 mg/g.PG-M对Pb2+的吸附均能较好地符合Freundlich和Langmuir等温吸附模型,其中Langmuir方程能更好地描述PG-M的吸附特征,说明PG-M在水溶液中对金属离子的吸附为单分子层吸附.PG-M吸附符合准二级动力学模型(r2〉0.99).不同浓度的HCl和HNO3溶液的再生实验发现,0.1 mol/L的HCl溶液作为吸附再生液,可取得较好的再生效果.表明PG-M是可再生的,具有较好的经济性和可持续性.  相似文献   
49.
温带典型草地土壤净氮矿化作用研究   总被引:22,自引:5,他引:17  
应用树脂芯方法,研究了内蒙古锡林河流域不同降水强度3种草地类型土壤净氮矿化作用.结果表明,7~10月份,羊草草原的平均净氮矿化率为0.333 kg·(hm2·d)-1,贝加尔针茅草原为0.316 kg·(hm2·d)-1,克氏针茅草原为0.211 kg·(hm2·d)-1;在相同的培养周期内,分阶段培养和连续培养对土壤的净氮矿化量和净氮矿化速率有显著影响;降雨是影响该区域氮素矿化的主要因素之一,3种草地类型土壤水分变化量与土壤净氮矿化速率呈正相关关系,相关系数分别为0.80、0.61、0.56.  相似文献   
50.
戴兴春  黄民生  徐亚同  谢冰 《环境科学》2007,28(8):1882-1888
针对石化工业废水开展沸石强化脱氮处理试验研究,通过比较沸石浓度25mg/L与空白,以及沸石浓度25 mg/L与50mg/L两阶段脱氮效果,探讨沸石促进脱氮功能的机理,结果表明,曝气池中投加沸石可明显提高氨氮和总氮的去除率,硝化细菌总数和硝化功能也得到增强。与空白对照组相比, 沸石浓度25mg/L的试验组运行稳定后,氨氮去除率提高约10%~13%,总氮去除率约提高13%,出水中NO3--N含量约提高100%,氨氮与总氮之比下降6%,内源硝化耗氧呼吸速率可提高138%,硝化细菌总数是空白对照组2.2folds。沸石浓度提高到50mg/L后,试验组的脱氮效果略有增加,但效果不明显。通过对试验结果的关联分析,认为沸石提高系统脱氮能力的原因一方面是因为沸石对NH4+及硝态氮的交换吸附,另一方面NH4+离子富集于沸石表面及内部、沸石颗粒独特的好氧-缺氧微环境,以及沸石离解出CO32- 或HCO3-增加碱度等条件,促进了硝化细菌和反硝化细菌的生长,从而提高了系统脱氮能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号