首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1312篇
  免费   132篇
  国内免费   581篇
安全科学   90篇
废物处理   147篇
环保管理   68篇
综合类   1023篇
基础理论   185篇
污染及防治   504篇
评价与监测   8篇
  2024年   15篇
  2023年   46篇
  2022年   36篇
  2021年   71篇
  2020年   59篇
  2019年   73篇
  2018年   30篇
  2017年   27篇
  2016年   43篇
  2015年   58篇
  2014年   116篇
  2013年   74篇
  2012年   108篇
  2011年   100篇
  2010年   103篇
  2009年   113篇
  2008年   118篇
  2007年   109篇
  2006年   140篇
  2005年   107篇
  2004年   97篇
  2003年   115篇
  2002年   70篇
  2001年   38篇
  2000年   33篇
  1999年   29篇
  1998年   30篇
  1997年   12篇
  1996年   16篇
  1995年   14篇
  1994年   12篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
排序方式: 共有2025条查询结果,搜索用时 484 毫秒
91.
ZnO-PMMA复合材料光催化去除水中低浓度氨氮   总被引:1,自引:0,他引:1  
通过水热法制备纳米ZnO,采用热粘固法成功地将其负载于聚甲基丙烯酸甲酯(PMMA)微球表面,并对ZnO-PMMA复合材料光催化去除水中低浓度氨氮的能力进行了考察.同时,探究了负载比例、初始氨氮浓度、催化剂浓度和pH对低浓度氨氮去除效率的影响.实验结果显示,PMMA改善了纳米ZnO的分散性和光催化能力,ZnO-PMMA能够有效地催化去除氨氮废水.在汞灯照射下,当pH=12、温度为30℃时,1 g·L~(-1)的催化剂(ZnO-PMMA)对50 mg·L~(-1)的氨氮废水去除率达到66%,且反应产物硝氮和亚硝氮含量较低,体现了该催化剂具有将氨氮转化为N2的良好的光催化降解能力.同时,纳米材料可以简单方便地回收,减轻了对环境的潜在影响,符合绿色化学的原则.  相似文献   
92.
采用简单的沉积-沉淀法合成了BiOBr/Bi_2MoO_6(BOB/BMO)异质结,采用XRD、XPS、TEM、SEM、EDS、FT-IR、UV-Vis-DRS、PL、PC和EIS等测试技术对光催化剂的物相组成、形貌、光吸收特性和光电化学性能等进行系统表征,并以模型污染物甲基橙(MO)的吸附和光催化降解作为探针来评价BiOBr/Bi_2MoO_6异质结的吸附性能与光催化活性增强机制.SEM和TEM分析结果表明,所得Bi_2MoO_6微球由大量厚度约为20~50 nm的纳米片组成;沉淀-沉积法所得样品的形貌分析显示,尺寸约为10 nm的BiOBr量子点均匀沉积在Bi_2MoO_6微球表面,形成的新颖的BOB/BMO异质结.N2吸附/脱附结果表明,Bi_2MoO_6和BiOBr形成异质结具有大的比表面积(64.94 m2·g-1),且表面孔结构丰富.吸附/光催化降解实验结果表明,与纯Bi_2MoO_6或者BiOBr相比,BOB/BMO异质结表现出更好的吸附性能和光催化活性.吸附/光催化协同作用机理分析表明,BOB/BMO异质结具有大的比表面积和丰富的孔结构是其吸附性能增强的主要原因.此外,光致发光(PL)谱、光电流(PC)和交流阻抗(EIS)分析进一步揭示了BOB/BMO异质结有利于光生载流子的分离与转移,导致光催化活性增强,二者的协同作用使其对MO具有优越的去除性能.此外,BOB/BMO异质结较稳定,重复使用性能良好,有望用于MO废水的实际处理.  相似文献   
93.
以Mg(NO3)2·6H2O、Al(NO3)3·9H2O、Zn(NO3)2·6H2O、Bi(NO3)3·5H2O为主要原料,采用水热合成法,制备了Bi OCl/Zn Mg Al-HTLCs光催化剂,对其进行XRD、EDS、SEM、FT-IR、UV-Vis、TGA表征,并通过降解甲基橙(MO)实验,探究催化剂水热合成的p H、溶剂、温度对其光催化性能的影响.结果表明:Zn Mg Al-HTLCs改善了Bi OCl的分散性,Bi OCl/Zn Mg Al-HTLCs能够有效地催化去除水中的甲基橙,在p H=7.5、溶剂为水、T=140℃条件下,可见光催化活性最佳,光照60 min后对10 mg·L-1的甲基橙溶液(MO)的降解率均达到85%以上.综合表明,Bi OCl/Zn Mg Al-HTLCs是一种具有潜在应用前景的光催化剂.  相似文献   
94.
采用两种技术路线合成了钙钛矿型SrFeO3光催化剂,并对其光催化行为进行深入研究。结果表明,聚乙二醇的加入对纯相SrFeO3的形成有一定的影响。当体系中不加入聚乙二醇时,无论怎样改变反应条件,最终产物中仍含有SrCO3杂质;当体系中加入聚乙二醇时,能够得到纯相SrFeO3。甲基橙光降解实验结果表明,与纯相的SrFeO3相比,杂相的SrFeO3在可见光下具有较高的活性。光催化稳定性研究表明,含有杂相的SrFeO3光催化实验后其自身结构发生晶格坍塌,而纯相SrFeO3光催化测试后样品的结构没有明显变化,由此可以推出SrFeO3所显示的光催化活性有可能来自于其晶格内的Fe4+离子和表面氧空位的共同作用。  相似文献   
95.
Ag3PO4光催化剂具有良好的可见光催化活性,但存在易光腐蚀和使用后回收难的的问题.本研究以废电池获得的磁性MnZnFe2O4作为载体,通过蛋清辅助水热原位沉积构建了Z型MnZnFe2O4@Ag3PO4异质结.采用X-射线衍射、扫描电镜、紫外可见漫反射、价带能谱、磁滞回线等测试手段,对不同Ag3PO4含量(10%~30%)异质结的物相结构、微观形貌、光学及磁学性能进行了分析表征.考察了制备材料对模型污染物四环素(TC)光催化降解的活性.利用原位X射线光电子能谱分析(ISI-XPS)、电子自旋共振(EPR)和自由基淬灭试验探讨了异质结光催化降解机理.结果表明,MnZnFe2O4的介入拓宽了异质结的光谱响应范围和比表面积,Z型异质结提高了光生载流子的寿命和氧化还原反应活性.优化的MnZnFe2O4<...  相似文献   
96.
采用管式光催化反应器,在石英玻璃管壁上涂镀含碳纳米TiO2薄膜,研究含碳纳米TiO2对甲醇气体的光催化降解性能。实验结果表明:随气体流量增加,甲醇降解率呈线性降低;在气体流量为200mL/min、相对湿度为40%、甲醇初始质量浓度为90~170mg/m^3的较佳条件下,甲醇降解率维持在80%以上,最高达85%;在甲醇初始质量浓度为150mg/m^3、气体流餐为200mL/min、相对湿度为40%的条件下,德国Degusa—P25光催化剂对甲醇的平均降解率为89%,含碳纳米TiO2对甲醇的平均降解率为82%,最人降解率为85%。  相似文献   
97.
程刚  周孝德  王静  仝攀瑞 《化工环保》2007,27(4):319-322
介绍了纳米晶粒TiO2多孔微球的主要制备方法、主要参量及表征、光催化性能研究进展,指出了纳米晶粒TiO2多孔微球制备过程的技术关键与基本参量的功能。针对目前存在的问题,提出了今后的主要研究方向,并展望了纳米晶粒TiO2多孔微球在水处理领域的应用前景。  相似文献   
98.
采用水热合成法,将Fe(NO3)3·9H2O、ZnCl2和AgNO3对纳米管TiO2进行掺杂,使用TEM、XRD、XPS、比表面积分析仪及UV-visDRS对掺杂后的纳米管TiO2进行表征并考察其光催化氧化去除罗丹明B的效果,从而优选最佳掺杂金属。结果表明,煅烧温度可影响纳米管TiO2锐钛矿相相对含量、比表面积及禁带宽度,进而影响其光催化活性。此外,掺杂金属离子的种类不同,纳米管TiO2的光催化活性也受到影响。500℃煅烧非掺杂纳米管TiO2的存在下,光催化氧化罗丹明B的去除率为98.72%。向纳米管TiO2中掺杂Fe3+、Zn2+及Ag+时,光催化氧化罗丹明B的效果得到提高。对以上三种掺杂金属离子而言,掺杂量为1.0%(原子百分含量)的催化剂的最佳煅烧温度为550℃。其中,Fe3+掺杂纳米管TiO2光催化活性最高,50min内光催化氧化罗丹明B的去除率可达99.0%。  相似文献   
99.
以半导体颗粒作为光催化剂,用光和氧化剂使有机物彻底转化成二氧化碳和水。这是近十年来正在逐步完善的降解有机物的新方法。许多国家正在投入大量资金和人力进行半导体光催化反应的基础研究及应用基础研究。  相似文献   
100.
以聚乙烯吡咯烷酮(PVP)为稳定剂,采用化学沉积法制备了磷酸银/树脂复合物,降解亚甲基蓝,研究其光催化活性,并对样品进行了XRD和SEM表征。探讨了不同的光源、催化剂投加量、PVP含量、p H值等因素对亚甲基蓝降解率的影响。结果表明,在太阳光(夏天早上9点到11点的阳光)下,偏酸介质中,催化剂用量为0.8 g/L,PVP质量分数为0.01%的磷酸银/树脂复合物,液面高度为15 cm的条件下对亚甲基蓝有最佳降解效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号