首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   7篇
  国内免费   2篇
综合类   16篇
基础理论   5篇
污染及防治   2篇
评价与监测   2篇
  2024年   1篇
  2023年   1篇
  2021年   10篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
排序方式: 共有25条查询结果,搜索用时 24 毫秒
11.
《环境科学与技术》2021,44(7):108-114
草原型河湖消落带由于其水陆的周期性交换特征,对水体碳氮磷等营养物质的输入具有重要作用。该文以呼伦湖及3条主要入湖河流消落带为采样区,采用原位土柱实验法探究了河湖消落带土壤碳氮磷的释放规律。结果表明:消落带地表覆盖对水淹状态下营养盐的释放影响较大,粪便覆盖土柱释放速率高于植被覆盖土柱,裸土土柱释放水平最低;蒸馏水对照组营养盐的总释放通量高于原位湖水组,平均释放通量为原位湖水组的1.1~1.4倍;不同类型土柱的总有机碳(TOC)、总氮(TN)、氨氮(NH_4~+-N)、总磷(TP)释放速率的变化趋势基本一致,浸泡平均释放速率大小为TOCTNTPNH_4~+-N,且粪便覆盖土的释放通量约为裸土的6倍,为植被覆盖土的2倍。  相似文献   
12.
呼伦湖是我国北方第一大湖,具有涵养水源、生物多样性维护、气候调节等重要生态功能,对于维系我国北方生态安全屏障具有重要作用.近年来,随着气候暖干化加剧,呼伦湖面临着湖体面积萎缩、芦苇湿地大面积消失、局部草原区退化严重、土地沙化面积扩大、关键种群缺失等生态安全问题.该研究围绕“水资源-水环境-水生态”三水共生目标,以“山水林田湖草沙”系统观为指导,基于遥感和GIS技术对呼伦湖流域1990—2018年的生态安全时空分布格局进行评价.结果表明:①2018年呼伦湖及其流域的生态安全指数分别为0.495和0.774,分别处于预警和良好状态.②呼伦湖流域生态安全自1990年以来分别经历了骤降期、稳定期和恢复期等3个时期,呈现“一林一草一湖”的生态安全分布格局.③2010年呼伦湖生态安全水平最低,主要分布在新开河入湖口、湖西岸大部分区域、湖中心以及湖东南方向的湾口区域;流域则在2015年的生态安全状况最差,主要位于新左旗中部、海拉尔河流域以及呼伦沟等地,尤其是沿乌尔逊河上游东侧地带表现最为突出.④影响呼伦湖流域生态安全水平的主要因素为入湖径流量、蓝藻水华面积占比和水源涵养量,而长期超载过牧、水体污染物浓缩效应以及湿地面积萎缩是限制生态安全水平进一步提升的重要因素.研究显示,呼伦湖流域生态安全与水资源状况密切相关,湖面面积维持在2 036 km2以上能保障流域较高的生态安全水平.此外,蓝藻水华面积、放牧强度与湿地面积均关系着区域生态安全,建议通过建立蓝藻水华风险防控体系、合理核定载畜量、保护与修复芦苇湿地以改善局部区域生态安全状况.   相似文献   
13.
沉积物有机质是湖泊物质循环的重要组成部分之一,研究沉积物有机质的赋存和迁移转化特征对于湖泊生态保护具有重要意义.以位于我国寒旱区的蒙新湖区典型代表湖泊——呼伦湖为例,利用连续提取法、三维荧光激发发射矩阵光谱-平行因子法(EEMs-PARAFAC)和碳稳定同位素(δ13C)、碳氮比值(C/N)指标测定,并结合室内模拟试验,研究了呼伦湖表层沉积物有机质的赋存特征、释放效应及影响因素.结果表明:①呼伦湖表层沉积物有机质含量在26.67~38.09 g/kg之间,其主要组分为胡敏素(HM),HM占沉积物有机质的相对比例为74.1%.沉积物有机质主要来自于陆源,陆源相对贡献率在80%左右.②沉积物室内静态释放模拟试验结果表明,沉积物有机质释放会导致上覆水中溶解性有机质(DOM)浓度和组分均发生改变,上覆水中溶解性有机碳(DOC)浓度由30.85 mg/L升至37.57 mg/L,类腐殖质组分所占比例升高.沉积物有机质释放还导致上覆水中氮磷浓度升高,其中溶解性总氮(DTN)和溶解性总磷(DTP)的浓度分别升高了0.89和0.16 mg/L.③近年来,呼伦湖流域温度升高,导致呼伦湖沉积物有机质的释放效应增强.研究显示,虽然呼伦湖沉积物有机质主要以难降解组分为主,但是其释放效应对水体碳、氮、磷浓度的影响仍然不容忽视.   相似文献   
14.
为探究呼伦湖中As(砷)的时空变化格局及成因,分别于春季、夏季、秋季、冬季采集呼伦湖表层水和表层沉积物样品,对As的时空分布及其组成特征进行了调查,并探讨呼伦湖中As的来源及环境因素对水体As分布的影响.结果表明:①呼伦湖水体中ρ(TAs)(TAs为总As)在6.6~87.3 μg/L之间,平均值为47.0 μg/L,其中ρ(DTAs)(DTAs为溶解态TAs)占比为70.6%~99.8%,且As(Ⅴ)(砷酸盐)为主要存在形态.春季、冬季ρ(TAs)平均值高于夏季、秋季,且冬季ρ(TAs)的空间分布与其他3个季节差异明显.②表层沉积物w(TAs)为1.64~15.49 mg/kg,各季节w(TAs)空间分布均呈由西北向东南递减的趋势;w(F1)(F1为可交换态及碳酸盐结合态As)和w(F2)(F2为Fe/Mn氧化物结合态As)在w(TAs)中的占比相对较高,分别为31.7%和30.0%,一定环境条件下F1和F2易向水体迁移,是水体中As的主要来源.③呼伦湖水体pH、冬季冰封、入湖河流等环境因素均可影响水体中As的时空分布,其中冰封引起的沉积物-水界面缺氧环境及污染物浓缩效应是造成冬季湖泊西北沿岸水体ρ(TAs)显著升高的主要原因.研究显示,呼伦湖水体及沉积物中的As均以自然来源为主,其中沉积物释放及环境变化是水体中As时空分布格局的主要影响因素.   相似文献   
15.
冰封期呼伦湖浮游藻类群落结构及其与水环境因子的关系   总被引:1,自引:0,他引:1  
为探讨冰封状态下呼伦湖的水生态系统演变过程,2015年12月—2016年3月环湖设置6个采样点进行浮游藻类及湖水水质的监测。浮游藻类以绿藻门Chlorophyta种类最多(52.5%),其次为硅藻门Bacillariophyta(29.8%),蓝藻门Cyanophyta(10.5%)。物种丰富度和3种生物多样性指数(Shannon-Wiener多样性指数、Margalef丰富度指数、Pielou均匀度指数)从12月至次年3月呈下降趋势。浮游藻类丰度自12月至次年3月呈现上升趋势。典范对应分析(CCA)排序结果表明:NH3-N、TN、TP、电导率、DO、BOD5、CODMn和pH是影响呼伦湖浮游藻类群落结构特征的主要环境因子,其中,NH3-N、TN和TP分别对硅藻门、绿藻门和蓝藻门的影响较大。  相似文献   
16.
利用呼伦湖湿地50年的气象资料、水文资料和生态环境监测资料,采用迈阿密模型及回归统计分析方法,分析了气象水文因子对呼伦湖湿地区域植物气候生产潜力的影响,结果表明,①50年来该湿地植物气候生产潜力变化趋势总体为下降趋势,减少的气候倾向率为每10年157.7 kg·km-2,峰值时段为1970—1990年,两个谷值时段为1961—1969年、1991—2010年,最大值和最小值与降水量出现的最多值和最少值一一对应。②在15个气象水文因子中有年降水量、年蒸散量、生长季径流量、春季大风日数、水位、春季平均风速、年大风日数、水域面积8个因子达到显著性检验(P〈0.150~0.001),上述8个因子的排序也是与湿地区域植物气候生产潜力相关程度由大到小的排序。综述表明,呼伦湖湿地区域呈暖干化趋势,并且干旱灾害比较严重,是限制气候生产潜力的重要原因。③气象水文因子协同作用对该湿地区域植物气候生产潜力的影响较大,复相关系数为-0.997,年蒸散量与年平均气温、年降水量、生长季径流量和水位因子对湿地区域植物气候生产潜力的贡献相反,随其减少或增加,湿地区域植物气候生产潜力变化率增加或减少149.7 kg·hm-2。可以看出,该湿地气象水文因子的匹配并不理想,暖干化趋势依然是制约该区光能利用率低下的重要原因。④该湿地区域植物现实的生产力远未达到气候生产潜力,约有近60%的潜力可以开发;光能利用率较小的主要原因:一是现有的生态保护、修复技术及管理水平还比较落后,二是该区域暖干化趋势显著;而提高气候资源利用率的有效途径是加大保护生态环境力度和积极实施人工增雨、节水灌溉工程。  相似文献   
17.
呼伦湖为研究区域,采用回归分析方法遥感反演水体COD浓度并进行水体水质评价。分别选取2012年8月5日和2013年7月2日13个取样点的实测COD浓度值并结合同1天MODIS影像,建立了基于MODIS遥感影像的半经验回归模型并进行验证,COD浓度估算值与实测值相关系数R=0.75。反演结果较好,说明应用MODIS数据对呼伦湖水体COD浓度监测有较好的适用性。利用模型反演2013年5—10月呼伦湖水体COD浓度时间序列分布,结合GB 3838—2002《地表水环境质量标准》基本项目标准限值(COD)讨论呼伦湖水质,认为呼伦湖水体属于Ⅴ类水体。  相似文献   
18.
太湖和呼伦湖沉积物对磷的吸附特征及影响因素   总被引:20,自引:15,他引:5  
为了探索我国南北方湖泊沉积物对磷吸附特征的差异性,选取太湖和呼伦湖为研究对象,通过室内模拟实验,研究我国南北方典型代表湖泊沉积物对磷的吸附特征及其影响因素.结果表明:①太湖和呼伦湖沉积物对磷的最大吸附量分别为1 428.57 mg·kg-1和56.81 mg·kg-1,前者对磷吸附容量远远高于后者,对上覆水体中磷削减发挥更重要的作用;②与呼伦湖相比,太湖沉积物颗粒直径更小,比表面积更大,其对磷吸附能力更强;③两个湖泊沉积物磷吸附平衡时对磷的吸附量与Al、Fe、Mn总含量呈正相关关系(P<0.05),与活性Al、Fe、Si、Mn呈显著正相关(P<0.01),与Si元素含量呈显著负相关(P<0.01),故Al、Fe、Mn总含量相对较高、Si含量相对较低的太湖沉积物对磷的吸附能力更强;④随着上覆水pH值的上升,两个湖泊沉积物对磷吸附能力均呈现下降的趋势,且pH上升对太湖沉积物磷吸附行为影响更大,因此,沉积物特性和上覆水pH值影响湖泊水体磷行为.  相似文献   
19.
多方法研究呼伦湖表层沉积物有机质的赋存特征及来源   总被引:1,自引:0,他引:1  
湖泊沉积物有机质是全球碳循环的重要组成部分之一.寒旱区湖泊由于地理位置和气候条件的特殊性,其沉积物有机质的赋存和迁移转化特征更容易受到气候变化的影响.以我国寒旱区典型代表湖泊——呼伦湖为例,采用连续提取法、C/N(碳氮比值)、δ13C(碳稳定同位素)、三维荧光光谱技术对呼伦湖表层沉积物有机质的含量和组分的时空分布特征、污染来源及稳定性进行了研究.结果表明:①2018年10月(秋季)、2019年3月(冬季)、2019年5月(春季)、2019年7月(夏季),呼伦湖表层沉积物中w(TOC)的平均值分别为(25.05±9.73)(26.92±11.60)(24.68±10.19)(24.36±10.01)g/kg,呈冬季高、夏季低,由西北部向东南部递减的时空分布趋势.②w(WEOM)(WEOM为水提态有机质)、w(FA)(FA为富里酸)、w(HA)(HA为胡敏酸)和w(HM)(HM为胡敏素)的年均值分别为(0.63±0.33)(2.31±1.26)(3.42±1.49)(19.21±7.83)g/kg,w(WEOM):w(FA):w(HA):w(HM)为1.0:3.7:5.5:30.7,其中HM为有机质的优势组分.③WEOM包括类富里酸组分C1,类腐殖酸组分C2和C3,以及类色氨酸组分C4共4个荧光组分,其中,类腐殖质组分(C1+C2+C3)贡献了总荧光强度的79.2%,为优势荧光组分.④沉积物有机质主要来自于陆源,陆源有机质的平均贡献率在80%左右.⑤沉积物PQ值(胡敏酸占腐殖酸的比例)和WEOM的HIX(腐殖化指数)年均值分别为0.55和6.39,表明现阶段呼伦湖表层沉积物有机质腐殖化程度较高且相对稳定.研究显示:呼伦湖表层沉积物有机质含量较高,表现出季节和空间分布差异性;有机质主要来自陆源,以类腐殖质为主,具有腐殖化程度高和相对稳定的特点.   相似文献   
20.
随着社会经济的快速发展,我国多数流域受到了不同程度的人类活动影响,并导致了水体污染、生物多样性退化等一系列问题,流域生态系统健康已成为制约我国经济社会可持续发展的突出因素之一.因此,开展人类活动对流域生态健康影响风险评估方法研究具有重要意义,也将对我国未来流域生态环境保护及建设的决策指导起到重要的作用.该研究以旱寒区呼伦湖流域为研究对象,基于人类活动、生态格局、生态功能和生态压力等多个角度,通过构建科学合理的流域人类活动-生态系统评价指标体系,并结合交互风险评估矩阵,开展人类活动对流域生态健康影响风险评估.结果表明:①呼伦湖流域GDP和人口主要分布在海拉尔区和满洲里市周边,其他区域GDP强度和人口强度较低;②呼伦湖流域GDP强度指标有2个子流域分别处于40~60和60~80之间,人口强度指标有1个子流域处于60~80之间,2个子流域处于40~60之间,生态系统指标有8个子流域处于60~80之间,其余子流域均大于80;③呼伦湖流域32个子流域中,有30个子流域处于低风险状态,面积占全区域的98.62%,另有2个子流域处于中等风险状态,面积占全流域的1.38%,研究区域内无高风险子流域.研究显示,该研究提出的评估方法可以有效评估人类活动对流域生态健康影响的风险,有助于明确流域生态健康主要影响因素及系统变化的内在驱动机制,从而为流域尺度生态环境保护及可持续发展提供理论依据与技术支持.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号