首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   3篇
  国内免费   77篇
安全科学   2篇
废物处理   3篇
环保管理   4篇
综合类   87篇
基础理论   12篇
污染及防治   43篇
评价与监测   4篇
  2023年   1篇
  2022年   2篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   4篇
  2013年   34篇
  2012年   14篇
  2011年   4篇
  2010年   8篇
  2009年   9篇
  2008年   7篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1983年   2篇
排序方式: 共有155条查询结果,搜索用时 18 毫秒
81.
SPE- GC/MS法测定水中对硝基氯苯和2,4- 二硝基氯苯   总被引:2,自引:1,他引:2  
采用SPE-GC/MS法测定水中对硝基氯苯和2,4-二硝基氯苯,优化了试验条件.对硝基氯苯在1.00 mg/L~80.0 mg/L之间线性关系良好,2,4-二硝基氯苯在1.00 mg/L~50.0 mg/L之间线性关系良好,方法检出限对硝基氯苯为0.6 μg/L,2,4-二硝基氯苯为2.1 μg/L,回收率对硝基氯苯为86.2%~94.7%,2,4-二硝基氯苯为87.3%~95.4%.  相似文献   
82.
对4个旱柳(Sailx matsudana)无性系8,10,18和22号进行了水培试验,研究了96h后旱柳对水中2,4-二氯苯酚(2,4-DCP)的去除和吸收积累能力. 结果表明:旱柳可促进2,4-DCP降解,在96 h内4个旱柳无性系8,10,18和22号对20 mg/L的2,4-DCP去除率分别为56.63%,59.85%,55.17%和56.90%. 将4个旱柳无性系分别曝露在10,20和30 mg/L的2,4-DCP环境中,随着ρ(2,4-DCP)的增大,根系和地上部分中的w(2,4-DCP)增加,且根>茎叶;10号无性系地上部分未检测出2,4-DCP且其根系中的w(2,4-DCP)显著低于其他无性系;22号根系和地上部分的w(2,4-DCP)均显著高于其他无性系.水溶液中ρ(2,4-DCP)小于20 mg/L时,2,4-DCP对旱柳生长无显著抑制作用. 不同旱柳无性系对2,4-DCP均具有一定的吸收蓄积能力.   相似文献   
83.
以携带质粒pJP4[含编码2,4-二氯苯氧基乙酸(2,4-D)降解功能的基因片段]的基因工程菌Pseudomonas putida SM1443::gfp2x (pJP4::dsRed)为供体菌,通过半连续流实验研究了质粒基因强化对活性污泥系统的2,4-D的降解效应及菌群结构的影响.结果表明,以初始浓度约为320mg/L的2,4-D为唯一碳源,向活性污泥系统投加携带pJP4质粒的基因工程菌P. putida,运行初期,降解促进作用不明显;随着半连续流反应的进行,促进作用显著增强.与对照系统相比,降解速率之差最高为6.67mg/(L·h).从基因强化系统中筛选到1株占有优势的接合子,经鉴定为Alcaligenes sp.::pJP4. Alcaligenes sp.本身不具备降解2,4-D的能力,获得质粒pJP4后,对2,4-D降解能力大幅度提高,与野生型2,4-D高效降解菌Bacillus sp.相当. PCR-DGGE分析表明,在受到2,4-D冲击条件下基因强化的活性污泥系统较对照系统保持了相对更加稳定的菌群结构.  相似文献   
84.
生物活性炭降解2,4-二氯酚的特性   总被引:11,自引:5,他引:6  
以普通活性污泥法和石英载体生物膜法为对照,研究生物活性炭对2,4-二氯酚(2,4-DCP)的吸附特征和生物吸附动力学,探讨生物活性炭去除2,4-DCP的作用机制.结果表明:使用粉末活性炭吸附2,4-DCP可行且具有较强的抗冲击负荷能力,生物活性炭比活性污泥法、石英生物膜法的降解速率快,抗冲击负荷能力强,适合长期高浓度运行使用.且在生物活性炭系统中,除了活性炭吸附和生物降解作用外,活性炭对2,4-DCP还有氧化降解作用.  相似文献   
85.
剧毒化学品甲苯-2,4-二异氰酸酯运输危险性评估   总被引:1,自引:0,他引:1  
为探讨低挥发性剧毒化学品甲苯-2,4-二异氰酸酯在运输过程中大量泄漏引起群体中毒事故的可能性以及对环境的影响,对本品的急性毒性、扩散模型、环境转归、生态毒性,以及运输泄漏事故资料进行综合分析和评估。评估结果本品吸人中毒的潜在危险性指数为低度危险物质;扩散模型运输泄漏模拟危险区域下风向距离小于某些非剧毒品;环境转归研究显示本品在环境介质中没有持久性,没有明显的生物蓄积性,生态毒性较低;历年来运输泄漏事故分析未见发生大规模严重群体中毒和环境污染事故。认为本品在运输过程中大量泄漏,不会大范围扩散引起严重群体中毒事故,也不会对环境造成严重和长期的危害,建议在运输环节中运输条件适当放宽,按照一般有毒品进行管理。  相似文献   
86.
Holt E  Weber R  Stevenson G  Gaus C 《Chemosphere》2012,88(3):364-370
Chlorinated pesticides can contain impurities of dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and their precursors, as a result of various manufacturing processes and conditions. As precursor formation of PCDD/Fs can also be mediated by ultraviolet light (UV), this study investigated whether PCDD/Fs are formed when currently used pesticides are exposed to natural sunlight. Formulations containing pentachloronitrobenzene (PCNB; n = 2) and 2,4-dichlorophenoxyacetic acid (2,4-D; n = 1) were exposed to sunlight in quartz tubes, and the concentration of 93 PCDD/F congeners were monitored over time. Considerable formation of PCDD/Fs was observed in both PCNB formulations (by up to 5600%, to a maximum concentration of 57 000 μg ∑PCDD/F kg−1) as well as the 2,4-D formulation (by 3000%, to 140 μg ∑PCDD/F kg−1). TEQ also increased by up to 980%, to a maximum concentration of 28 μg kg−1 in PCNB, but did not change in the 2,4-D formulation. Assuming similar yields as observed in the present study as a worst case scenario the use of PCNB in Australia may result in the formation of 155 g TEQ annum−1, contributed primarily by OCDD formation. This warrants detailed evaluations on the contemporary release of PCDD/Fs to the environment after the use of pesticides. Changes in congener profiles (including the ratio of PCDDs to PCDFs (DF ratio)) suggest that pesticide sources of PCDD/Fs after sunlight exposure may not be recognized based on matching source fingerprints established from manufacturing impurities. These changes also provide preliminary insights into the possible formation routes and types of precursors involved.  相似文献   
87.
This research focuses on the removal of 2, 4-D via denitrification, with a particular emphasis on the effect of adding naturally generated volatile fatty acids (VFAs) as a carbon source. These VFAs had been produced from an acid-phase anaerobic digester (mean VFA concentration of 3153 ± 801 mg/L [as acetic acid]). The first step involved developing 2, 4-D degrading bacteria in a sequencing batch reactor (SBR) fed with both sewage and 2, 4-D (30–100 mg/L). Subsequent denitrification batch tests demonstrated that the specific denitrification rate increased from 0.0119 ± 0.0039 to 0.0192 ± 0.0079 g NO3-N/g volatile suspended solids (VSS) per day, when using 2, 4-D alone versus 2, 4-D plus natural VFAs from the digester as a carbon source. Similarly, the specific 2, 4-D consumption rate increased from 0.0016 ± 0.0009 to 0.0055 ± 0.0021 g 2,4-D/g VSS per day, when using 2, 4-D alone as compared to using 2, 4-D plus natural VFAs. Finally, a parallel increase in the percent 2, 4-D removal was observed, rising from 28.33 ± 11.88 using 2, 4-D alone to 54.17 ± 21.89 using 2, 4-D plus natural VFAs.  相似文献   
88.
A cross-section analytical study was conducted to evaluate the risk of pesticide exposure to those applying the Class II pesticides 2,4-D and paraquat in the paddy-growing areas of Kerian, Perak, Malaysia. It investigated the influence of weather on exposure as well as documented health problems commonly related to pesticide exposure. Potential inhalation and dermal exposure for 140 paddy farmers (handlers of pesticides) were assessed. Results showed that while temperature and humidity affected exposure, windspeed had the strongest impact on pesticide exposure via inhalation. However, the degree of exposure to both herbicides via inhalation was below the permissible exposure limits set by United States National Institute of Occupational Safety and Health (NIOSH). Dermal Exposure Assessment Method (DREAM) readings showed that dermal exposure with manual spraying ranged from moderate to high. With motorized sprayers, however, the level of dermal exposure ranged from low to moderate. Dermal exposure was significantly negatively correlated with the usage of protective clothing. Various types of deleterious health effects were detected among users of manual knapsack sprayers. Long-term spraying activities were positively correlated with increasing levels of the gamma-glutamyl transpeptidase (GGT) liver enzyme. The type of spraying equipment, usage of proper protective clothing and adherence to correct spraying practices were found to be the most important factors influencing the degree of pesticide exposure among those applying pesticides.  相似文献   
89.
Abstract

Residues of 2,4‐D (2,4‐dichlorophenoxyacetic acid) in air samples from several sampling sites in central and southern Saskatchewan during the spraying seasons in the 1966–68 and 1970–75 periods were determined by gas‐liquid Chromatographic techniques. Initially, individual esters of 2,4‐D were characterized by retention times and confirmed further by co‐injection and dual column procedures. Since 1973, however, only total 2,4‐D acid levels in air samples have been determined after esterification to the methyl ester and confirmed by gc/ms techniques whenever possible.

Up to 50% of the daily samples collected during the spraying season at any of the locations and during any given year contained 2,4‐D, with butyl esters being found most frequently. The daily 24‐hr mean atmospheric concentrations of 2,4‐D ranged from 0.01 to 1.22 μg/m3, 0.01 to 13.50 μg/m3, and 0.05 to 0.59 μg/m for the iso‐propyl, mixed butyl and iso‐octyl esters, respectively. Even when the samples were analysed for the total 2,4‐D content, i.e. from 1973 onwards, the maximum level of the total acid reached only 23.14 μg/m. In any given year and at any of the sampling sites, about 30% of the samples contained less than 0.01 μg/m3 of 2,4‐D. In another 40% of the samples, the levels of 2,4‐D ranged from 0.01 to 0.099 yg/m. Only about 30% of the samples contained 2,4‐D concentrations higher than 0.1 μg/m3, with only 10% or less exceeding 1 μg/m3.

None of the samples, obtained with the high volume particu‐late sampler, showed any detectable levels of 2,4‐D, indicating little or no transport of 2,4‐D adsorbed on dust particles or as crystals of amine salts.  相似文献   
90.
This study explored the possibility of removing 4‐nitrophenol (4‐NP) and 2,4‐dichlorophenol (2,4‐DCP) from water by using a dead blue‐green algae, Nostoc sp., dried and untreated and dried and treated with iron (Fe‐treated with 0.1 M ferric chloride solution for 1 day). The Nostoc sp. untreated and Fe‐treated biomass were used to study the sorption and desorption of 4‐NP and 2,4‐DCP. The effects of solute concentration, ionic strength, and temperature on sorption and desorption in the presence of untreated and treated Nostoc sp. biomass were investigated. The Fe‐treated Nostoc sp. biomass sorbed higher amounts of both 4‐NP and 2,4‐DCP than the untreated biomass. The percent cumulative desorption decreased from 6.41% to 0.28% and 1.84% to 0.19%, respectively, for 4‐NP and 2,4‐DCP for the Fe‐treated biomass. Biosorption of 4‐NP and 2,4‐DCP onto untreated and Fe‐treated Nostoc sp. biomass conformed to Freundlich isotherms. Iron treatment of Nostoc sp. biomass increased the value of ln K from 8.07 to 8.59 for 4‐NP and from 8.04 to 8.51 for 2,4‐DCP but decreased their desorption. An increase in ionic strength (0.003–0.03) increased the biosorption of both substituted phenols and decreased their percent desorption. An increase in temperature in the range of 15–35°C decreased the sorption of 4‐NP and 2,4‐DCP onto both untreated and Fe‐treated Nostoc sp. biomass and increased their desorption, indicating that the biosorption of both substituted phenols onto untreated and Fe‐treated Nostoc sp. biomass was principally a physical process. The results of this study suggest that Fe‐treated dried Nostoc sp. biomass could be explored as an inexpensive and eco‐friendly material for the effective removal of these phenols and, potentially, other chemicals from industrial wastewater and contaminated groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号