首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   96篇
  国内免费   449篇
安全科学   64篇
废物处理   49篇
环保管理   87篇
综合类   721篇
基础理论   201篇
污染及防治   221篇
评价与监测   37篇
社会与环境   5篇
灾害及防治   4篇
  2024年   1篇
  2023年   16篇
  2022年   37篇
  2021年   39篇
  2020年   34篇
  2019年   47篇
  2018年   43篇
  2017年   41篇
  2016年   53篇
  2015年   58篇
  2014年   68篇
  2013年   121篇
  2012年   103篇
  2011年   78篇
  2010年   60篇
  2009年   69篇
  2008年   50篇
  2007年   91篇
  2006年   64篇
  2005年   53篇
  2004年   46篇
  2003年   40篇
  2002年   37篇
  2001年   22篇
  2000年   13篇
  1999年   21篇
  1998年   27篇
  1997年   13篇
  1996年   10篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1982年   1篇
排序方式: 共有1389条查询结果,搜索用时 15 毫秒
31.
The development, testing, and application of a probabilistic model framework for the light attenuation coefficient for downwelling irradiance (Kd) and Secchi disc transparency (SD) that resolves the effects of several light attenuating constituents, including phytoplankton and nonliving particles (tripton), is documented. The model is consistent with optical theory, partitioning the magnitudes of the light attenuating processes of absorption and scattering according to the contributions of attenuating constituents as simple summations. The probabilistic framework accommodates variations in the character and concentrations of these constituents and ambient conditions during measurements, and recognizes a linear relationship between the magnitudes of absorption and scattering by tripton. The model is tested and applied for a 21 km reach of the Seneca River, New York, that features optical gradients caused by an intervening hypereutrophic lake and dam, and a severe infestation of the exotic zebra mussel. The model is applied to resolve the roles of phytoplankton and tripton in regulating measured longitudinal patterns of SD along the study reach of the river and increases in SD since the zebra mussel invasion, and to predict decreases in Kd since the invasion.  相似文献   
32.
The degradation of polyacrylamide (PAM) in simulate wastewater was studied in UV/Fenton/C4H4O62? system. The factors such as molecular ratio of H2O2/Fe2+/C4H4O62?, pH, and the dosage of Fenton reagent that could affect the PAM degradation in the UV/Fenton/C4H4O62? system were investigated. The experimental results showed that adding C4H4O62? to UV/Fenton system could form photosensitive ferrous complexes, which led to higher degradation efficiency of PAM. The degradation rate of PAM could be up to 95.2% under the following conditions: the concentration of H2O2, Fe2+, and C4H4O62? were 22.5, 2.25, and 2.25 mmol/L, respectively (i.e., molecular ratio of H2O2/Fe2+/C4H4O62? was 10:1:1), the pH value was 3.0.  相似文献   
33.
The phototransformation of Oryzalin was studied under UV light (λmax ≥ 290 nm) and sunlight (λmax ≥ 250 nm) in aqueous isopropanol and acetonitrile solution in absence and presence of TiO2 as sensitizer. The rate of photodegradation of Oryzalin in different solvent system followed first-order kinetics, and calculated half-lives were found to be in the range of 23.52-53.75 h for UV light and 41.23-61.43 h for sunlight. From this study, total 12 photoproducts were identified and characterized on the basis of column chromatography and Q-Tof micromass spectral data. The plausible mechanism of phototransformation involved was hydrolysis, breaking of sulfonic bond, and loss of amino and sulfonic acid group.  相似文献   
34.
Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently, these effects are best understood for auditory and chemosensory modalities, and recent reviews highlight their importance for conservation. We examined how anthropogenic changes to the visual environment (ambient light, transmission, and backgrounds) affect visual communication and camouflage and considered the implications of these effects for conservation. Human changes to the visual environment can increase predation risk by affecting camouflage effectiveness, lead to maladaptive patterns of mate choice, and disrupt mutualistic interactions between pollinators and plants. Implications for conservation are particularly evident for disrupted camouflage due to its tight links with survival. The conservation importance of impaired visual communication is less documented. The effects of anthropogenic changes on visual communication and camouflage may be severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when human‐induced modifications to the visual environment are evolutionarily novel (i.e., very different from natural variation); affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and behavioral, sensory, or physiological plasticity; and the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. Our findings suggest that anthropogenic effects on the visual environment may be of similar importance relative to conservation as anthropogenic effects on other sensory modalities.  相似文献   
35.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   
36.
主要根据客户要求,在低速(1 km/h)及轻载工况下,测量传动端轴承无飞溅润滑条件下的温升等参数,而进行相关的电机试验,为某型机车牵引电机传动端轴承在低速及轻载工况下,无飞溅润滑提供试验验证及技术支撑。  相似文献   
37.
研究了UV/Fenton技术对高浓度金属清洗乳化油废水的处理效果,考察了亚铁与双氧水浓度、pH、反应时间和搅拌对COD去除效果的影响。实验结果表明,UV/Fenton技术对高浓度乳化油废水(COD平均浓度为35 000 mg/L)具有较高的去除效果,最佳工艺条件为:亚铁与双氧水浓度分别为2 400 mg/L和6 000 mg/L,pH为3,经过2 h反应,COD可降低至1 050 mg/L,去除率为97%。搅拌会降低COD的去除率。研究表明,UV/Fenton技术对高浓度乳化油废水具有很好的降解效果,且药品消耗较低,为目前此类高浓度有机废水的处理提供了技术参考。  相似文献   
38.
利用UVC去除低浓度苯的实验研究   总被引:3,自引:1,他引:2  
探讨了不同实验参数对苯的UVC去除效果的影响,获得了苯的去除率与苯的初始浓度、气体流量、相对湿度和氧气含量等参数之间的关系。数据表明,在实验条件范围内,苯的去除率的倒数与苯初始浓度、气体流量之间为线性关系;苯的去除率随相对湿度的增加呈现先升高后缓慢降低的关系,最佳相对湿度值在30%~50%之间;苯的去除率随氧气量的增加而缓慢增加;波长为185+254 nm的UV与254 nm的UV相比净化效果更为理想。还分析了苯降解产生的中间产物,探讨了苯的降解机理。  相似文献   
39.
不同高级氧化法对水中低浓度药物甲硝唑降解过程的比较   总被引:3,自引:0,他引:3  
采用UV、H2O2、UV/H2O2、Fenton、UV/Fenton和UV/TiO2方法,对水中低浓度的药物甲硝唑进行降解。通过HPLC和UV-Vis光谱得到的甲硝唑去除率。详细讨论了Fe2+、TiO2和H2O2的初始浓度以及溶液的初始pH值对降解效率的影响。结果表明,UV/Fenton和UV/TiO2 2种系统对水中低浓度甲硝唑均有很好的去除效果,但前者的光催化效率更高。在甲硝唑浓度=6 μmol/L,H2O2和Fe2+的初始浓度分别为0.5 mg/L和2.94 μmol/L,pH=4的条件下,UV/Fenton方法对甲硝唑水溶液光催化的最佳效率为95.8%。  相似文献   
40.
Gupta B  Rani M  Kumar R  Dureja P 《Chemosphere》2011,85(5):710-716
The widespread occurrence of pesticide residues in different agricultural and food commodities has raised concern among the environmentalists and food chemists. In order to keep a proper track of these materials, studies on their decay profiles in the various segments of ecosystem under varying environmental conditions are needed. In view of this, the metabolites of quinalphos in water and soil under controlled conditions and in plants, namely tomato and radish in field conditions have been analysed and possible pathways suggested. In order to follow the decay of the pesticide, an HPLC procedure has been developed. Studies conducted in water at different temperatures, pH and organic content reveal that the persistence of the pesticide decreases with the increase in all the three variables. In the three different types of soils studied, the effect of pH is more or less apparent on a similar line. On an average a faster decay is observed in the case of plants than in water and soil. The decay profiles in all these cases follow first order kinetics. The metabolites were identified by GC-MS. The investigations reflect that degradation occurs through hydrolysis, S-oxidation, dealkylation and thiono-thiol rearrangement. The pathways seem to be complex and different metabolites were observed with the change in the matrix. Quinalphos oxon, O-ethyl-O-quinoxalin-2-yl phosphoric acid, 2-hydroxy quinoxaline and quinoxaline-2-thiol were observed in all the matrices. Results further indicate that the metabolites, 2-hydroxy quinoxaline and oxon, which are more toxic than parent compound, persist for a longer time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号