首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  国内免费   22篇
安全科学   2篇
环保管理   4篇
综合类   32篇
基础理论   1篇
污染及防治   11篇
  2021年   1篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
31.
厌氧消化与SBR组合工艺处理城市垃圾渗滤液   总被引:1,自引:0,他引:1  
高锋  李晨 《环境工程》2008,26(6):33-35
ASBR和SBR反应器组合起来,形成一种序批式操作的城市垃圾渗滤液处理工艺。ASBR反应器作为厌氧消化反应器,主要完成初步降解有机物的目的,将原水加入ASBR中进行厌氧消化,研究了废水在28.8~72 h四种不同水力停留时间(HRT)下的处理效果,结果表明,将ASBR的HRT控制在36 h,COD去除率保持41.2%的同时,出水ρ(BOD5)/ρ(COD)及ρ(BOD5)/ρ(NH4+-N)分别为0.41和4.6,对有机物和氮的后续好氧生物去除较为有利。经SBR处理后出水NH4+-N含量稳定在11 mg/L左右,但出水COD浓度达不到排放标准,经添加混凝剂聚合硫酸铁(PFS)混凝沉淀处理后废水中COD含量可降至100 mg/L以下。  相似文献   
32.
本文以实际猪场沼气废水为研究对象,以ASBR为反应器,接种厌氧消化污泥培养厌氧氨氧化细菌,厌氧氨氧化阶段成功启动后,研究了厌氧氨氧化脱氮最佳运行工艺。试验研究表明,厌氧氨氧化反应适宜的温度在35(±1)℃之间,适宜的pH在7.5—8.0之间,HRT选用24h。当达到最佳运行参数时,NH4+-N的去除率达到87.6%,NO2- -N的去除率达到99.96%。  相似文献   
33.
采用厌氧序批式反应器处理生活垃圾快速机械脱除水,研究了常温与中温反应器启动及运行过程中有机物的去除效率,以及稳定运行过程中单个周期的运行特性。结果表明:中温ASBR具有较高的生活垃圾快速机械脱除水预处理效能,当进水COD为9 000~13 000 mg/L,HRT为48 h时,中温ASBR对COD的去除率为95%以上,每去除1 g COD能产生沼气428.5 mL。生活垃圾快速机械脱除水在处理的过程中能产生一定的碱度,中温ASBR出水pH较进水的更高,稳定在6.8~8.0。在研究典型周期运行特性时,发现中温及常温下ASBR处理生活垃圾快速机械脱除水的最短水力停留时间分别为9,14 h,中温ASBR处理机械脱除水更具优势,酸化风险亦较低。  相似文献   
34.
现代厌氧反应器的现状与发展   总被引:4,自引:0,他引:4  
回顾了厌氧反应器发展的三个阶段,对现代反应器的结构与应用情况进行了详细的介绍,认为目前主要研究与应用的热点是以现代反应器为代表的工艺;以膜技术和分阶段多相多级技术将是未来污水处理技术的主导技术;以复合反应器代表的工艺在处理城市生活污水,处理垃圾渗滤液以及有毒物质废水等将具有更多的优势。在能源资源短缺、环境日益恶化的今天,处理能力强、适用范围广、耗能少等优点的厌氧反应器有着广泛的应用前景与研究价值。  相似文献   
35.
采用厌氧氨氧化反应器(ASBR),分别以普通厌氧活性污泥、混合污泥、好氧活性污泥为种泥,通过对氨氮,NO2^--N等指标监测、分析及污泥颜色的观察,研究采用不同普通活性污泥为种泥启动ASBR的可行性及差异。结果表明.ASBR反应器A和B成功启动,C因反应器故障.启动失败。采用厌氧活性污泥为接种污泥(反应器A),当进水N的容积负荷为kg/(m^3·d)时,氨氮平均去除率为14.4%。P(NO2^--N):p(NH4^+-N)变化量为1.24。采用混合污泥为接种污泥(反应器B).N的容积负荷于前者相同时,氨氮去除率平均29.7%,p(NO2^--N):p(NH4^+-N)变化量为1.27。采用混合普通活性污泥作为种泥培养厌氧氨氧化污泥优于单一厌氧普通活性污泥。  相似文献   
36.
The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs) (0^#-6^#) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4^#-N, NO2^--N, NO3^--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2^# reactor in which COD/NH4^+ -N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4^+-N consumed : NO2^- -N consumed : NO3^- -N produced was 1:1.38:0.19 in 0^# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4^+-N was fed for the reactors, the ratio of NO2^- -N consumed: NH4^+-N consumed was in the range of 1.51-2.29 and the ratio of NO;-N produced: NH4^+ -N consumed in the range of 0 -0.05.  相似文献   
37.
基质比对厌氧氨氧化耦合反硝化脱氮除碳的影响   总被引:1,自引:0,他引:1  
安芳娇  黄剑明  黄利  乔瑞  王瑾  陈永志 《环境科学》2018,39(11):5058-5064
采用SBR处理实际生活污水,在实现半亚硝化时,其出水加入定量的Na NO_2作为厌氧氨氧化过程厌氧序批式反应器(ASBR)的进水.在温度为24℃、pH为7. 2±0. 2时,考察不同进水NO_2~--N/NH_4~+-N对厌氧氨氧化耦合反硝化脱氮除碳的影响.结果表明:(1)进水NO_2~--N/NH_4~+-N为1. 4~1. 6时系统脱氮效能最佳,NH_4~+-N、NO_2~--N和COD平均出水浓度分别为2. 14、1. 07和30. 50 mg·L~(-1),三者去除率分别为93. 62%、97. 79%和74. 75%,ΔNO_2~--N/ΔNH_4~+-N和ΔNO_3~--N/ΔNH_4~+-N分别为1. 60和0. 17,TN的去除是异养反硝化菌和厌氧氨氧化菌共同作用的结果.(2)随着进水NO_2~--N/NH_4~+-N的逐渐增大,厌氧氨氧化对脱氮的贡献率逐渐减小,异养反硝化对脱氮的贡献率逐渐增加.(3)典型周期内,NH_4~+-N和NO_2~--N的降解过程均为零级反应,线性关系良好,比降解速率分别为0. 404 mg·(g·h)~(-1)和0. 599 mg·(g·h)~(-1),两者的比降解速率之比为1. 48,COD的比降解速率呈现逐渐增大的趋势.  相似文献   
38.
HRT对厌氧氨氧化协同异养反硝化脱氮的影响   总被引:2,自引:2,他引:0  
采用SBR处理实际生活污水,在实现半亚硝化时,出水NH_4~+-N、NO-2-N及COD平均浓度分别为37.27、39.97和120mg·L~(-1),将其作为厌氧氨氧化反应器(ASBR)的进水.控制温度为24℃,pH为7.2±0.2,考察HRT分别为36、33、30和27h时对厌氧氨氧化协同异养反硝化脱氮的影响.结果表明:(1)HRT为33 h时系统脱氮效能最佳,总氮容积负荷(TNLR)和总氮去除负荷(TNRR)平均值分别为0.056 kg·(m3·d)~(-1)和0.050 kg·(m3·d)~(-1);NH_4~+-N、NO-2-N和COD平均出水浓度分别为1.36、0.47和49.79 mg·L~(-1),三者去除率分别为96.30%、98.83%和56.17%;ΔNO-2-N/ΔNH_4~+-N和ΔNO_3~--N/ΔNH_4~+-N分别为1.17和0.15,比厌氧氨氧化反应的理论值(1.32,0.26)小0.15和0.11,造成此偏差的原因是由于系统中存在异养反硝化.(2)随着HRT的逐渐减小,厌氧氨氧化对脱氮的贡献率逐渐减小,异养反硝化对脱氮的贡献率逐渐增加.本研究结果可为厌氧氨氧化技术在实际工程中的应用提供参考.  相似文献   
39.
研究了ASBR反应器中厌氧氨氧化细菌的富集以及无机碳源对ASBR反应器中厌氧氨氧化的影响。实验分别在8.0 L和4.0 L的ASBR反应器中进行。结果表明,接种污泥在驯化55 d后,第一次出现厌氧氨氧化细菌活性迹象;在85 d时候,厌氧氨氧化细菌成为优势菌种;在140 d时候,反应器运行稳定,出水浓度非常低,污泥颜色由灰色变成浅红色。随着NaHCO3溶液质量浓度从1.0 g/L增加到1.4 g/L,厌氧氨氧化细菌的活性迅速增加,当NaHCO3溶液质量浓度达到2.0 g/L时厌氧氨氧化细菌的活性受到抑制。然而,随着NaHCO3溶液质量浓度下降到1.0 g/L,厌氧氨氧化细菌活性可以恢复。  相似文献   
40.
研究了在厌氧条件下以葡萄糖为基质的序批式间歇反应系统(ASBR)与完全混合反应系统(CSTR)中氢分压的变化.结果表明,在完全混合反应系统中,微生物中糖原含量保持在142.52mg.g-1(以VSS计),氢分压稳定在291.3Pa,最大氢利用速率为0.703g.g-.1d-1.在序批间歇反应系统中,当进水结束时,50.17%的葡萄糖转化为糖原储存在细胞体内,氢分压达到最大为14.3Pa;当反应结束时,微生物细胞中储存的糖原被完全代谢,氢分压降至最低,为3.5Pa,反应器中污泥最大氢利用速率为1.719g.g-.1d-1.序批式反应器氢利用速率较大及糖原储存的存在,降低了系统的氢分压,保证了厌氧系统的高效、稳定的运行.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号