首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   5篇
废物处理   8篇
环保管理   11篇
综合类   3篇
基础理论   1篇
污染及防治   5篇
评价与监测   2篇
  2019年   2篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  1997年   1篇
  1987年   1篇
  1978年   1篇
排序方式: 共有30条查询结果,搜索用时 578 毫秒
11.
This paper presents a study on the use of best management practices (BMPs) for controlling nonpoint pollution in the Xikeng Reservoir watershed located in Shenzhen, China. A BMP treatment train design, including a pond, a wetland, and a buffer strip placed in series was implemented at the reservoir location. A separate grass swale was also constructed at the site. Low impact development (LID) BMPs, namely a planter box and bioboxes, were used at the parking lot of the reservoir’s Administration Building. Samples were collected during storm events and were analyzed for total suspended solids (TSS), biochemical oxygen demand (BOD5), ammonia nitrogen (NH3—N), and total phosphorus (TP). The removal efficiencies of both BMP systems were evaluated using the Efficiency Ratio (ER) method based on the event mean concentration (EMC) data. In summary, the pond/wetland treatment train removed 70%―90% of TSS, 20%―50% of BOD5, and 30%―70% of TP and NH3—N. The swale removed 50%―90% of TSS, 30%―55% of BOD5, −10%―35% of NH3—N, and 25%―70% of TP. For the planter box and biobox, the ranges of removal rates were 70%―90%, 20%―50%, and 30%―70% for TSS, BOD5, and ammonia and phosphorus, respectively.  相似文献   
12.
The effects of using untreated leachate for supplemental water addition and liquid recirculation on anaerobic digestion of food waste was evaluated by combining cyclic water recycle operations with batch mesophilic biochemical methane potential (BMP) assays. Cyclic BMP assays indicated that using an appropriate fraction of recycled leachate and fresh make up water can stimulate methanogenic activity and enhance biogas production. Conversely increasing the percentage of recycled leachate in the make up water eventually causes methanogenic inhibition and decrease in the rate of food waste stabilization. The decrease in activity is exacerbated as the number cycles increases. Inhibition is possibly attributed to accumulation and elevated concentrations of ammonia as well as other waste by products in the recycled leachate that inhibit methanogenesis.  相似文献   
13.
Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m × 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m × 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides.  相似文献   
14.
A multi-year study was conducted to evaluate the effectiveness of Florida's Best Management Practices (BMPs) for protecting aquatic ecosystems during intensive forestry operations and forest chemical applications. Five silviculture sites adjacent to stream systems were selected for study from major eco-regions of the state. Replicate stream bioassessments, using a multimetric approach (the Stream Condition Index), were conducted as part of a `before-after, control-impact' (BACI) study design. Bioassessment stations were established above and below the treatment area to determine pre-treatment reference and test conditions. Silviculture treatments of clearcut harvesting, intensive mechanical site preparation and machine planting were then completed, during which all applicable BMPs were adhered to. In addition, two sites received an herbicide application and one site was fertilized. Following the treatments, the sites were re-sampled at the same points both one year, and two years after the first bioassessment. No significant differences in the SCI were observed between the reference and test portions of the streams that could be attributed to the silviculture operations using BMPs. Hence, the study showed that BMPs provided protection to adjacent stream ecosystems, even during intensive silviculture and forest chemical applications.  相似文献   
15.
Bioassessment is a useful tool to determine the impact of logging practices on the biological integrity of streams and wetlands. Measuring biota directly has an intuitive appeal for impact assessment, and biota can be superior indicators to physical or chemical characteristics because they can reflect cumulative impacts over time. Logging can affect stream and wetland biota by increasing sedimentation rates, altering hydrologic, thermal, and chemical regimes, and changing the base of food webs. Biotic impacts of logging on streams compared to wetlands probably differ, and in this paper we review some of those differences. In streams, invertebrates, fishes, amphibians, algae, and macrophytes have been used as indicators of logging impacts. In wetlands, bioassessment is just beginning to be used, and plants and birds are the most promising indicator taxa. Various best management practices (BMPs) have been developed to reduce the impacts of logging on stream and wetland biota, and we review quantitative studies that have evaluated the efficacy of some of these techniques in streams and wetlands in the eastern United States. Remarkably few studies that address the overall efficacy of BMPs in limiting biotic changes in streams and wetlands after BMP implementation have been published in scientific journals, although some work exists in reports or is unpublished. We review these works, and compile conclusions about BMP efficacy for biota from this body of research.  相似文献   
16.
基于理论分析,提出CODCH4/COD值作为废水厌氧可生化性的评价指标,确定了CODCH4/COD值表示厌氧可生化性的数值界限。同时,在BMP分析的基础上,采用CODCH4/COD值考察了垃圾渗滤液的厌氧可生化性,并与BOD5/COD值评价结果进行了对比。实验结果显示,CODCH4/COD值与BOD5/COD值用于垃圾渗滤液可生化性的评价,得出的结论具有相似性,但CODCH4/COD值大于BOD5/COD值。究其原因:好氧条件下,总的生化耗氧量(BOD)u小于理论完全需氧量(COD);厌氧条件下,有机物完全去除时CODCH4(理)等于理论完全需氧量。此外,BOD5测试时间仅5 d,而BMP测试时间一般在30 d以上,从而使微生物有足够的时间去适应废水水质,故能较好地反映废水的可生化性。  相似文献   
17.
This article reviews the key, cross‐cutting findings concerning watershed‐scale cost‐effective placement of best management practices (BMPs) emerging from the National Institute of Food and Agriculture Conservation Effects Assessment Project (CEAP) competitive grants watershed studies. The synthesis focuses on two fundamental aspects of the cost‐effectiveness problem: (1) how to assess the location‐ and farmer‐specific costs of BMP implementation, and (2) how to decide on which BMPs need to be implemented and where within a given watershed. Major lessons learned are that (1) data availability remains a significant limiting factor in capturing within‐watershed BMP cost variability; (2) strong watershed community connections help overcome the cost estimation challenges; (3) detailing cost components facilitates the transferability of estimates to alternative locations and/or economic conditions; and (4) implicit costs vary significantly across space and farmers. Furthermore, CEAP studies showed that (5) evolutionary algorithms provide workable ways to identify cost‐effective BMP placements; (6) tradeoffs between total conservation costs and watershed‐scale cost‐effective water quality improvements are commonly large; (7) quality baseline information is essential to solving cost‐effectiveness problem; and (8) systemic and modeling uncertainties alter cost‐effective BMP placements considerably.  相似文献   
18.
热水解预处理改善污泥的厌氧消化性能   总被引:35,自引:9,他引:26  
王治军  王伟 《环境科学》2005,26(1):68-71
先将污泥进行热水解预处理 ,其后测定生物化学甲烷势(BMP)来研究热水解对污泥厌氧消化性能的影响 .结果表明 ,热水解预处理能加速污泥中固体有机物的溶解 ,溶解后的有机物进一步水解生成低分子物质 ,其中挥发性有机酸占溶解性COD(SCOD)的30%~40% ,从而污泥的厌氧消化性能得到明显改善 .最合适的热水解温度和热水解时间为170℃、30min.此条件下 ,污泥厌氧消化时总COD(TCOD)去除率从预处理前的38.11%提高到56.78% ,污泥中TCOD的沼气产率从16.0mL/g提高到250mL/g .  相似文献   
19.
以城市污水厂剩余活性污泥为对象,研究在不同碱解药剂和剂量以及不同水热预处理温度和水热时间下"碱解+低温水热预处理"的破胞效果。通过对预处理泥样进行中温((35±1)℃)厌氧消化生物化学甲烷势(biochemical methane potential,BMP)实验来评价该预处理工艺对中温厌氧消化性能的影响。实验结果表明,SCOD的溶出效果及VSS的减量化程度随着加碱剂量、水热温度的增加而呈现先升高后略有下降的趋势,且在碱解条件为0.05 g NaOH/g TS和水热条件为70℃、9 h时的预处理条件下破胞效果最为显著;在该预处理条件下,SCOD的溶出率可达52.3%,VSS的降解率达到33.3%。BMP实验结果显示,在最佳预处理条件下,与对照组相比,TCOD去除率提高了77.1%,甲烷产气量是对照组的2.7倍,甲烷产气率可达354 mL CH4/g VS。  相似文献   
20.
The effect of different Lystek biosolids doses on the anaerobic digestability of thickened waste activated sludge (TWAS) was evaluated in a lab- and full-scale anaerobic digester. The overall findings of this study emphasize the beneficial impact of Lystek addition to the lab- and full-scale anaerobic digesters in terms of enhanced biogas production and increased volatile suspended solids reduction (VSSR) efficiency. Lystek added at 4% by volume to TWAS increased the methane yield from 0.22 to 0.26 L CH4/g VSSadded at an solids retention time (SRT) of 10 days, and from 0.27 to 0.29 L CH4/g VSSadded at an SRT of 15 days. Furthermore, the VSSRs of 37% and 47% were observed for the TWAS, and the TWAS with 4% Lystek, while at an SRT of 15 days, the observed VSSR were 49% and 58%, respectively. The lab-scale study showed that the influence of Lystek addition on methane yield and solids destruction efficiencies was more pronounced at the shorter SRT, 20% enhancement (SRT of 10 d) vs. 9% enhancement (SRT of 15 d) for methane yield, and 27% (SRT of 10 d) vs. 22% (SRT of 15 d) for VSS destruction efficiency improvement. Furthermore, addition of 4% of Lystek to the feed of the full-scale anaerobic digester at St. Marys wastewater treatment plant (WWTP) resulted in a 50% increase in the average specific methanogenic activity and 23% increase in methane yield of the biochemical methane potential tests after eight months. The results showed that Lystek degradation kinetics were 40% faster than the TWAS, as reflected by first order kinetic coefficients of 0.053 d?1 and 0.073 d?1 for TWAS and Lystek at an SRT of 10 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号