首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
环保管理   4篇
综合类   3篇
环境理论   3篇
社会与环境   2篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2010年   1篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 6 毫秒
11.
In this article, a comparative study is presented for the transcritical cycle with expansion valve (TCEV) and transcritical cycle with vortex tube (TCVT) mainly based on the second law of thermodynamics. Natural refrigerant nitrous oxide (N2O) is used in both the cycles for analysis. The evaporator and gas cooler temperatures are varied from ?55°C to 5°C and 35°C to 60°C, respectively. The effects of various operating and design parameters on the optimum heat rejection pressure, coefficient of performance (COP), exergy loss (irreversibility), and the exergetic efficiency are studied. Exergy analysis of each component in TCEV and TCVT is performed to identify the amount and locations of irreversibility. It is observed that the use of the vortex tube in place of the expansion valve reduces the total exergy losses and increases the exergetic efficiency as well as COP. The exergetic efficiency and COP of the TCVT are on average 10–12% higher compared to TCEV for the considered operating conditions. The computed values of the exergetic efficiency for TCVT using refrigerant N2O are the highest at an evaporator temperature of ?55°C, and the corresponding values of exergetic efficiency and exergy losses varies between 25.35% and 15.67% and between 74.65% and 84.33%, respectively. However, COP at the same evaporator temperature of ?55°C varies between 0.83 and 0.51. Furthermore, the optimum heat rejection pressure in TCVT is lower compared to that in TCEV. The results offer significant help for the optimum design and operating conditions of TCVT with refrigerant N2O.  相似文献   
12.
This study examines parametric approaches to the calculation of refrigerant-based CO2 emissions in different cooling areas. Both the exergy analyses of refrigerants, used in domestic, commercial, transportation and industrial applications, and the environmental performances regarding exergetic irreversibility are investigated separately. Then, CO2 emissions caused by systems are examined via two different parameters, I°) Environmental Impact Factor and ??°) Integrated Impact Factor (CIF). The study is based on a vapor compression cooling cycle model, commonly preferred by cooling applications, and the analyses have been made for 1 kW cooling capacity in relation to evaporator temperatures of the systems. In all cooling application, R134A gas stands out among the others in terms of coefficient of performance and exergy efficiency. Moreover, both emission analyses show that it has the lowest emission value. The paper concludes with an evaluation of the reasons for the refrigerant choice, the design and the selection of such a system, and why exergetic and environmental parameters should be preferred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号