This experimental study was originally designed to quantify the electrostatic characteristics of offshore grade fiberglass reinforced plastic (FRP) pipes [Dastidar, A. G., Dahn, C. J., Cole, B. W., & Lo, K. H. (2005a). Electrostatic characteristics of FRP pipes. In Fourth international conference on composite materials for offshore operation, Houston, TX, Oct 4–6, 2005]. Discharge energies were measured from the sample surfaces for each test condition after an aggressive corona charging of up to −40 kV. While the measured values of total discharge energy were relatively high for some samples, the energy in the first peak was significantly lower. The first peak energy is thought to be the most significant measure in establishing the potential for incendive events.
To further quantify the incendive potential of discharges from FRP pipes, a unique test method was developed [Dastidar, A. G., Dahn, C. J., Cole, B. W., & Lo, K. H., (2005b). Incendiary nature and electrostatic discharge characteristics of FRP pipes. In Fourth international conference on composite materials for offshore operation, Houston, TX, Oct 4–6, 2005]. The methodology has been expanded to include other FRP components. This paper describes the test method and the test results obtained for testing several FRP structures and materials (pipes, grill work, railing etc.). The significance of the experimental results to industry is also discussed. 相似文献
Experiments have been conducted to gain insight into the credibility of sparging aqueous solutions as an electrostatic ignition hazard for sensitive hydrogen/air or fuel/oxygen mixtures (Minimum Ignition Energies of ∼0.017 mJ and ∼0.002 mJ, respectively, compared to ∼0.25 mJ for hydrocarbon/air mixtures). Tests performed in a 0.5 m3 ullage produced electric field strengths between 125 and 560 V m−1 for air flows of 5–60 l min−1, respectively, comprised of 2–4 mm diameter bubbles. Field strength can be related to the space charge and fitting to an exponential accumulation curve enabled the charge generation rate from the air flows to be estimated. This was observed to be directly proportional to the air flow and its magnitude was consistent with literature data for bubble bursts. The charge accumulation observed at laboratory scale would not be a cause for concern. On the basis of a simple model, the charge accumulation in a 27 m3 ullage was predicted for a range of air flows. It is apparent from such calculations that ignition of hydrocarbon/air mixtures would not be expected. However, it would seem possible that field strengths might be sufficient to cause a risk of incendive spark or corona discharges in moderately sized vessels with sensitive flammable mixtures. 相似文献
A novel polycyclodextrin-modified magnetic cationic hydrogel(PCD-MCH) was developed and its performance,kinetics and mechanism for the removal of reactive brilliant red X-3B(X-3B) were studied.The results showed that the zeta-potential of PCD-MCH was 32.8 to16.7 mV at pH 3.0-10.5.The maximum X-3B adsorption capacity of PCD-MCH was2792.3 mg/g.The adsorption kinetics could be well-described by the Weber-Morris model and the homogeneous surface diffusion model(HSDM).Diffusion stages corresponding t... 相似文献
Surfactants are widely used to improve the solubility of oil in water in petrochemical, making it more difficult to remove oil–water emulsions during the water treatment process. Electrocoagulation (EC) is an appropriate method for treating oily wastewater and destabilizing emulsions. However, the demulsification mechanism of oil–water droplets emulsified by surfactants with different charges have not been investigated systematically. The demulsification performance of electrocoagulation on emulsions wastewater containing cationic, non-ionic, and anionic surfactants was studied. The results showed that the removal rate of total organic carbon (TOC) in oily wastewater with anionic surfactant by EC reached 92.98% ± 0.40% at a current density of 1 mA/cm2, while that of the non-ionic surfactant was 84.88% ± 0.63%. The characterization of flocs showed that EC has the highest coagulation and demulsification of oil droplets with a negative charge on the surface (−70.50 ± 10.25 mV), which indicated that the charge neutralization of oil droplets was beneficial for the destabilization of the formed oily flocs. However, when the zeta potential of the oil droplets reached 75.50 ± 1.25 mV, the TOC removal efficiency was only 11.80% ± 1.43%. The TOC removal could achieve 33.23% ± 3.21% when the current density improved from 1 mA/cm2 to 10 mA/cm2. The enhanced removal was due to the sweep coagulation rather than charge neutralization. This study provides a fundamental basis for the electrochemical treatment of oily wastewater. 相似文献