首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1707篇
  免费   30篇
  国内免费   197篇
安全科学   163篇
废物处理   41篇
环保管理   275篇
综合类   699篇
基础理论   218篇
环境理论   1篇
污染及防治   312篇
评价与监测   156篇
社会与环境   59篇
灾害及防治   10篇
  2023年   40篇
  2022年   53篇
  2021年   41篇
  2020年   42篇
  2019年   53篇
  2018年   38篇
  2017年   47篇
  2016年   77篇
  2015年   92篇
  2014年   98篇
  2013年   93篇
  2012年   66篇
  2011年   161篇
  2010年   85篇
  2009年   131篇
  2008年   136篇
  2007年   123篇
  2006年   72篇
  2005年   58篇
  2004年   47篇
  2003年   44篇
  2002年   47篇
  2001年   31篇
  2000年   47篇
  1999年   33篇
  1998年   30篇
  1997年   30篇
  1996年   20篇
  1995年   22篇
  1994年   15篇
  1993年   11篇
  1992年   8篇
  1991年   7篇
  1990年   2篇
  1989年   7篇
  1988年   1篇
  1987年   1篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1969年   1篇
排序方式: 共有1934条查询结果,搜索用时 46 毫秒
991.
除氧器是火力发电厂给水回热系统中的一个混合式加热器,它的作用是除去锅炉给水中的氧气和其它不凝结气体,以保证锅炉给水的品质,除氧器的安全运行是发电厂安全运行的有效保证。本文对火力发电厂一台20万千瓦机组在正常运行时除氧器突然发生爆炸事故进行分析,找出事故原因提出预防事故的措施。  相似文献   
992.
华北地区城市绿地固碳能力测算研究   总被引:1,自引:0,他引:1  
文章通过对位于华北地区的7个案例的城市绿地植被固碳能力的研究,形成一套系统的计算方法。结果表明:适用于雄安新区的城市绿地单位面积固碳能力约为2.62 kg/a·m^2;各个植被群落的固碳能力从大到小依次为乔木(2.66 kg/a·m^2)、灌木(2.59 kg/a·m^2)、地被(2.01 kg/a·m^2)。研究结果将为实现城市绿地空间的合理布局、推进低碳城市建设提供科学依据。  相似文献   
993.
Using a standard plot method, the stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) in leaves, litter, and soil (0-20 cm depth) was investigated for three forest types: Populus davidiana, Larix principis-rupprechtii, and Pinus tabuliformis. The results showed that the stoichiometry of C, N, and P of the same component in the three forests were significantly different. The C and N contents in leaves, litter, and soil in P. davidiana forest were higher than those in L. principis-rupprechtii and P. tabuliformis forests were. However, P in the L. principis-rupprechtii forest was higher than that in the P. davidiana forest and P. tabuliformis forests were. The C, N, and P contents of the components in the three forests were, in order, leaves > litter > soil, and the three nutrient contents were significantly higher in leaves and litter than they were in soil. C:N and C:P in the three forests exhibited a trend of litter > leaves > soil, whereas that for N:P was leaves > soil > litter. There were highly significant positive relationships in N:P between the litter and the soil in the P. davidiana forest. Leaf C:N and litter C:P in the L. principis-rupprechtii forest were significantly negatively correlated, whereas N:P in the leaves and soil was positively correlated. There was a significant positive correlation in N:P between the leaves and the soil in the P. tabuliformis forest. In conclusion, the N contents in leaves and soil exhibited a significant positive correlation, whereas there was no significant correlation between C, N, and P in litter or soil. Environmental factors had a large influence on the stoichiometry of C, N, and P in soil. In particular, latitude and altitude had the most significant effects on C, N, P, C:N, and C:P and were significantly p ositively correlated. T hese results provide a scientific basis for f urther studies on nutrient utilization a nd t he cyclic characteristics of different forests in this area. © 2018 Science Press. All rights reserved.  相似文献   
994.
Nitrous oxide (N2O) is one of the potent greenhouse gases (GHG) that depletes the stratospheric ozone. Nitrogen fertilizers are considered to be a major source of nitrous oxide (N2O) emissions from arable soils. To investigate the characteristics of N2O emission, its influencing factors, and its response to nitrogen application in dry grassland in the Loess Plateau, one of the most intensively used agricultural regions in China, we conducted a field trial with two treatments including N0 (0 kg hm-2) and N150 (150 kg hm-2) at the Qingyang Loess Plateau grassland agricultural research station of Lanzhou University. An LGR-N2O/CO gas analyzer was used to monitor the emissions. The results showed that the N2O fluxes of the N0 and N150 treatments during the monitoring period were -0.0036 and 0.0118 mg m-2 h-1, respectively; the flux in case of the N150 treatment was significantly higher than that for the N0 treatment. The N2O emission flux has a distinct diurnal variation characteristic, which first showed the trend of decreasing and then increasing. Regression analysis indicated a significant positive correlation between the N2O flux and the surface soil water content at a depth of 10 cm. The N2O emission flux increased by 131.3%, compared with that during the non-precipitation days. At the same time, the N2O emission flux showed a trend of decreasing with the increase of the surface soil temperature at a depth of 10 cm. The daily emission characteristics indicated that there may be a significant underestimation of the N2O flux at the daily or longer time-scale, based on the N2O flux value measured at 9:00-11:00. In summary, the N2O emissions from the sown alfalfa grassland of the eastern Gansu are strongly affected by precipitation and nitrogen application and have obvious daily dynamic characteristics. It is recommended that the accuracy and representativeness of N2O emission flux data be enhanced by continuous dynamic measurement using the instrument. © 2018 Science Press. All rights reserved.  相似文献   
995.
Nitrous oxide (N2O), a potent greenhouse gas, is emitted during nitrogen removal in wastewater treatment, significantly contributing to greenhouse effect. Nitrogen removal generally involves nitrification and denitrification catalyzed by specific enzymes. N2O production and consumption vary considerably in response to specific enzyme-catalyzed nitrogen imbalances, but the mechanisms are not yet completely understood. Studying the regulation of related enzymes’ activity is essential to minimize N2O emissions during wastewater treatment. This paper aims to review the poorly understood related enzymes that most commonly involved in producing and consuming N2O in terms of their nature, structure and catalytic mechanisms. The pathways of N2O emission during wastewater treatment are briefly introduced. The key environmental factors influencing N2O emission through regulatory enzymes are summarized and the enzyme-based mechanisms are revealed. Several enzymebased techniques for mitigating N2O emissions directly or indirectly are proposed. Finally, areas for further research on N2O release during wastewater treatment are discussed.
  相似文献   
996.
• Emissions from two sedans were tested with gasoline, E10 and M15 at 30°C and -7°C. • As the temperature decreased, the PM, PN and BC emissions increased with all fuels. • Particulate emissions with E10 and M15 were more sensitive to the temperature. • The PN and BC generated during cold start-up dominated those over the WLTC. Ambient temperature has substantial impacts on vehicle emissions, but the impacts may differ between traditional and alcohol gasolines. The objective of this study was to investigate the effects of temperature on gaseous and particulate emissions with both traditional and alcohol gasoline. Regulated gaseous, particle mass (PM), particle number (PN) and black carbon (BC) emissions from typical passenger vehicles were separately quantified with gasoline, E10 (10% ethanol and 90% gasoline by volume) and M15 (15% methanol and 85% gasoline by volume) at both 30°C and -7°C. The particulate emissions with all fuels increased significantly with decreased temperature. The PM emissions with E10 were only 48.0%–50.7% of those with gasoline at 30°C but increased to 59.2%-79.4% at -7°C. The PM emissions with M15 were comparable to those with gasoline at 30°C, but at -7°C, the average PM emissions were higher than those with gasoline. The variation trend of PN emissions was similar to that of PM emissions with changes in the fuel and temperature. At 30°C, the BC emissions were lower with E10 and M15 than with gasoline in most cases, but E10 and M15 might emit more BC than gasoline at -7°C, especially M15. The results of the transient PN and BC emission rates show that particulate emissions were dominated mainly by those emitted during the cold-start moment. Overall, the particulate emissions with E10 and M15 were more easily affected by ambient temperature, and the advantages of E10 and M15 in controlling particulate emissions declined as the ambient temperature decreased.  相似文献   
997.
• Solvent-free chitosan oxidation is obtained by rapid mechanochemical reaction. • Different oxidants induce very diverse physicochemical changes on chitosan. • Oxidized chitosan with persulfate or percarbonate has improved adsorption capacity. • Uptake on oxidized chitosan with persulfate is 125-fold faster than on pristine one. Oxidation has been profitably utilized to improve some properties of chitosan. However, only solvent-based oxidation procedures have been proposed so far, which are hardly feasible at industrial scale in an economic way because of product recovery cost. In this study, a solvent-free, rapid, and effective oxidation method is proposed. It is based on direct solid-state reaction between chitosan and oxidant powder in a mechanochemical reactor. Results prove that by short high energy ball milling (<3 h) it is possible to achieve diverse physicochemical modifications employing different reagents. Apart from polysaccharidic chain shortening, persulfate provokes high amorphization and induces formation of ketonic groups; percarbonate heightens deacetylation degree, preserving in part crystallinity; calcium peroxide merely deprotonates amino groups and increases amorphization degree. Adsorption tests with the azo-dye reactive red 2 show that adsorption capacity of chitosan co-milled with persulfate (974 mg/g milled product), which is the best performing adsorbent, is twice that of pristine chitosan, while adsorption rate is outstandingly boosted (125 times).  相似文献   
998.
• Cu0.15-ACF performs the best for H2S and PH3 simultaneous removal. • 550°C and 90°C are separately calcination and reaction temperatures. • The reason why Cu0.15/ACF shows better performance was found. • The accumulation of H2PO4 and SO42−(H2O)6 is the deactivation cause of Cu0.15/ACF. Poisonous gases, such as H2S and PH3, produced by industrial production harm humans and damage the environment. In this study, H2S and PH3 were simultaneously removed at low temperature by modified activated carbon fiber (ACF) catalysts. We have considered the active metal type, content, precursor, calcination, and reaction temperature. Experimental results exhibited that ACF could best perform by loading 15% Cu from nitrate. The optimized calcination temperature and reaction temperature separately were 550°C and 90°C. Under these conditions, the most removal capacity could reach 69.7 mg/g and 132.1 mg/g, respectively. Characterization results showed that moderate calcination temperature (550°C) is suitable for the formation of the copper element on the surface of ACF, lower or higher temperature will generate more cuprous oxide. Although both can exhibit catalytic activity, the role of the copper element is significantly greater. Due to the exceptional dispersibility of copper (oxide), the ACF can still maintain the advantages of larger specific surface area and pore volume after loading copper, which is the main reason for better performance of related catalysts. Finally, increasing the copper loading amount can significantly increase the crystallinity and particle size of copper (oxide) on the ACF, thereby improving its catalytic performance. In situ IR found that the reason for the deactivation of the catalyst should be the accumulation of generated H2PO4 and SO42−(H2O)6 which could poison the catalyst.  相似文献   
999.
为探索淮北临涣矿区地表水体中氮的分布和来源,采集研究区河流和沉陷积水区样品,测试分析其水化学指标和氮、氧同位素特征值,并采用IsoSource模型计算不同端源氮的污染贡献率。结果表明:研究区地表水处于中度富营养化状态,矿区地表水中氮的输入源受含氮肥料、土壤有机氮和粪肥污水共同影响,所发生的硝化及反硝化作用微弱;矿区河水中氮的主要输入源为粪肥污水,贡献率达66.6%,沉陷积水区氮主要受含氮肥料输入的影响,贡献率达52.0%。  相似文献   
1000.
利用静海国家气象站1960~2019年日最高气温资料对静海高温天气发生的开始和结束时间、次数进行了统计,分析了持续高温天气过程的年际变化规律、时间演变特征,利用Mann-Kendall法对高温日数、年最高气温进行趋势检验;构建了日高温发生概率的“钟形”曲线模型,利用傅里叶变换分析日高温发生概率序列的主要分量,构建了基于傅里叶级数的日高温发生概率简化模型。结果表明:1960年至1996年静海年高温日数呈下降趋势,1997年开始年高温日数呈上升趋势,而年最高气温无显著的上升趋势;静海高温天气过程主要为持续1~2天的过程,近20年高温热浪发生次数明显增加;近60年高温日开始时间提前,结束时间推迟的趋势明显;模型较好的模拟了日高温发生概率的变化特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号