首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  国内免费   13篇
废物处理   2篇
综合类   24篇
基础理论   14篇
污染及防治   35篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
41.
Neamtu M  Siminiceanu I  Kettrup A 《Chemosphere》2000,40(12):1407-1410
The photodegradation of five representative nitromusk compounds in water has been performed in a stirred batch photoreactor with a UV low-pressure immersed mercury lamp, at constant temperature and different doses of hydrogen peroxide. The rate constants have been calculated on the basis of experimental data and a postulated first-order kinetic model. The rate constants, at 298 K and a dose of 1.1746 μmol l−1 H2O2 ranges from 0.3567 × 10−3 s−1 for musk tibetene, to 1.785 × 10−3 s−1 for musk ambrette.  相似文献   
42.
The solar photodegradation of five dyes, C.I. reactive red 2, C.I. reactive blue 4, C.I. reactive black 8, C.I. basic red 13, and C.I. basic yellow 2, were studied in a sunlight/Fe(III)-hydroxy system. It was observed that the photodegradation of these five dyes were pseudo-first order reactions, which has a little difference with the photodegradation kinetics of the dyes with UV-light as the irradiation source. The comparison between the two studies is also conducted.  相似文献   
43.
采用atrazine法测定了紫外反应装置的光强,通过H_2O_2法测定了装置的有效光程值。进而通过这些光强和光程,建立了低压紫外条件下水中常见的苯脲类除草剂—isoproturon的拟一级降解动力学模型。基于此,文章考察了不同紫外强度和不同pH下isoproturon的紫外降解特性。Isoproturon的紫外降解反应的拟一级反应速率常数随着紫外强度的增大而逐渐增加,进而求算得isoproturon的量子产率为0.00405 mol/einstein。溶液的p H在5~9范围内变化时,isoproturon的紫外降解效率不会受到显著影响。结果表明:增大紫外光强时可实现isoproturon这种新兴污染物的有效降解,而改变溶液的p H则无明显的提高效果。  相似文献   
44.
Fischer AR  Werner P  Goss KU 《Chemosphere》2011,82(2):210-214
The dye malachite green (MG) is used worldwide as a fungicide in aquaculture. It is a toxic substance which in aqueous solutions is partly converted into its non-ionic colorless form (leucocarbinol). The equilibrium between these two forms is pH-dependent (pK = 6.9). To assess the photodegradation of MG under sunlight conditions, both species were irradiated separately in aqueous solutions with different pH values (4.0 and 12.0) using various ultraviolet and visible wavelength ranges (UV/VIS). A 700 W high-pressure mercury lamp with special filters was used. No artificial photooxidizers such as H2O2 or TiO2 were added. MG leucocarbinol proved to be much more sensitive to irradiation than the dye form. Quantum yields Φ were calculated for some wavelength ranges as follows: MG carbinol: Φ(280-312nm) is 4.3 × 10−3, Φ(313-410nm) is 5.8 × 10−3, and MG dye: Φ(280-312nm) is 4.8 × 10−5, Φ(313-365nm) is 1.1 × 10−5, and Φ(>365nm) is 0, respectively. Therefore, the solar photolysis of MG is an important sink and primarily depends on the photodegradation of the colorless leucocarbinol. During the irradiation of MG leucocarbinol with wavelengths >365 nm, an intermediate was formed which has photocatalytical properties.  相似文献   
45.
Lindane (1α, 2α, 3β, 4α, 5α, 6β-hexachloro cyclohexane), methyl parathion (O,O-dimethyl-O-4-nitrophenyl phosphorothioate) and dichlorvos (2,2-dichlorovinyl-O-O-dimethyl phosphate) are removed from water individually and as a mixture by photo degradation using suspended and immobilized forms of TiO2 (Degussa P-25). Studies were conducted to optimize the coating thickness of immobilized photo catalyst. The rate of degradation of pesticides was compared in both suspended and immobilized TiO2 systems. Degradation studies of mixed pesticides were carried out with low concentrations (1.0 and 2.5 mg/L) of pesticides. Only three intermediate byproducts such as methyl paraoxon, O,O,O-trimethyl phosphonic thionate and p-nitrophenol were observed during the methyl parathion degradation in suspended, immobilized TiO2 systems and mixed pesticides degradation studies. At the end of the reaction methyl parathion and its by-products were completely degraded. During lindane degradation hexachloro cyclohexane, pentachloro cyclohexane, hexachloro benzene, 1-hydroxy 2,3,4,5,6-chlorocyclohexane, 1-hydroxy 2,3,4,5,6-chlorobenzene, pentachloro cyclopentadiene, 1,2,3,4,5-hydroxy cyclopentene and 1,2,3-hydroxy cyclobutane were identified in suspended and immobilized TiO2 systems, whereas only hexachloro cyclohexane, pentachloro cyclohexane, hexachloro benzene and pentachloro cyclopentadiene were observed during mixed pesticides degradation. No intermediate by-product was observed during the photo degradation of dichlorvos. Langmuir-Hinshelwood pseudo first order kinetic equation showed that there was not much change in the rates of degradation in both suspended and immobilized TiO2 systems irrespective of the pesticide. During mixed pesticides degradation, the degradation pattern was not similar to that of single pesticide.  相似文献   
46.
UV/TiO2/H2O2, UV/TiO2 and UV/H2O2 were compared as pre-treatment processes for the detoxification of mixtures of 4-chlorophenol (4CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) prior to their biological treatment. When each chlorophenol was initially supplied at 50 mg l−1, UV/TiO2/H2O2 treatment supported the highest pollutant removal, COD removal, and dechlorination efficiencies followed by UV/TiO2 and UV/H2O2. The remaining toxicity to Lipedium sativum was similar after all pre-treatments. Chlorophenol photodegradation was always well described by a first order model kinetic (r2 > 0.94) and the shortest 4CP, DCP, TCP and PCP half-lives of 8.7, 7.1, 4.5 and 3.3 h, respectively, were achieved during UV/TiO2/H2O2 treatment. No pollutant removal was observed in the controls conducted with H2O2 or TiO2 only. Inoculation of all the photochemically pre-treated mixtures with activated sludge microflora was followed by complete removal of the remaining pollutants. Combined UV/TiO2/H2O2-biological supported the highest detoxification, dechlorination (99%) and COD removal (88%) efficiencies. Similar results were achieved when each chlorophenol was supplied at 100 mg l−1. COD and Cl mass balances indicated UV, UV/H2O2, and UV/TiO2 treatments lead to the formation of recalcitrant photoproducts, some of which were chlorinated.  相似文献   
47.
Hung WC  Fu SH  Tseng JJ  Chu H  Ko TH 《Chemosphere》2007,66(11):2142-2151
The synthesis of TiO2 and Fe–TiO2 by sol–gel method is demonstrated and characterized. The characterization of TiO2 and Fe–TiO2 is performed with instruments, including TGA/DTA, FTIR, UV–Vis, N2 adsorption and SEM. Dichloromethane is used for the photocatalytic activity test. From the results of dichloromethane photocatalyitc degradation, the calcined temperature of TiO2 and the presence of water vapor influence the photocatalytic activity. The optimum doping amount of iron ions is 0.005 mol%, and this can enhance the photocatalytic activity, while too great an amount will make the iron ions become recombination centers for the electron–hole pairs and reduce the photocatalytic activity. UV–Vis diffuse reflectance spectra of Fe–TiO2 show an increase in absorbency in the visible light region with the increase in iron ions doping concentration The intermediate of dichloromethane photodegradation includes CHCl3, CCl4, CH2Cl2 and COCl2. The presence of iron ions may reduce the adsorption of Cl element on the surface of the photocatalyst.  相似文献   
48.
ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a = b = 11.176479 Å and c = 10.014323 Å. The band gap of ZnBiYO4 was estimated to be 1.58 eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min− 1 for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO42 − and NO3, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography–mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.  相似文献   
49.

Photodegradation of alphacypermethrin ((RS)-α cyano-3-phenoxy benzyl (1RS) cis-3-(2,2,dichlorovinyl)-2,2-dimethyl cyclopropane carboxylate) was studied as a thin film on glass surface and on black and red soil surfaces. A number of photoproducts from glass surfaces have been isolated, characterized and identified by gas chromatography-mass spectroscopy (GC-MS). However, only two of them viz. 3-phenoxy benzyl alcohol and [2,2-dichlorovinyl-3(2,2,dimethyl) cyclopropane carboxylate] could be identified from both the soil. Rate of photodegradation on glass and soil surface under UV and sunlight followed first order kinetics with significant correlation coefficients. The rate of photodegradation was greater on black than on red soil.

  相似文献   
50.
The weatherability of three types of enhanced photodegradable polyethylene films and corresponding control films were studied under outdoor and marine floating conditions at two exposure sites. Progress of weathering was monitored using tensile elongation at break. In general, both the enhanced-degradable plastics and the corresponding controls degraded slower in marine exposure than in outdoor exposure. This is attributed to the lower sample temperatures (compared to samples exposed outdoors) and to shielding from light afforded by surface fouling in samples exposed floating in sea water. Enhanced-photodegradable polyethylenes disintegrated faster than the control samples in the case of both outdoor and marine exposures. The improvement obtained in marine exposures was greater than that for outdoor exposure of corresponding sample types. This is due to the extremely slow rates of disintegration of control films under marine floating conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号