首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   39篇
  国内免费   265篇
安全科学   34篇
废物处理   4篇
环保管理   16篇
综合类   331篇
基础理论   74篇
污染及防治   107篇
评价与监测   9篇
社会与环境   6篇
  2024年   2篇
  2023年   9篇
  2022年   36篇
  2021年   31篇
  2020年   23篇
  2019年   31篇
  2018年   31篇
  2017年   21篇
  2016年   24篇
  2015年   28篇
  2014年   24篇
  2013年   33篇
  2012年   48篇
  2011年   33篇
  2010年   25篇
  2009年   22篇
  2008年   24篇
  2007年   22篇
  2006年   21篇
  2005年   13篇
  2004年   14篇
  2003年   12篇
  2002年   5篇
  2001年   10篇
  2000年   8篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1991年   2篇
  1990年   4篇
  1988年   2篇
  1982年   2篇
  1979年   2篇
排序方式: 共有581条查询结果,搜索用时 46 毫秒
41.
Currently, there are limited data on the levels of perfluoroalkyl substances other than perfluorooctane sulfonic acid and perfluorooctanoic acid in the human body. Most of this information has been extracted from biological monitoring of plasma while the occurrence of perfluoroalkyl substances in other human tissues is rarely studied. The objective of the present study was to develop a physiologically based pharmacokinetic model to assess the concentration of perfluoroalkyl substances in human tissues, based on an existing model previously validated for perfluorooctane sulfonic acid and perfluorooctanoic acid. Experimental data on concentrations of perfluoroalkyl substances in human tissues from individuals in Tarragona County (Catalonia, Spain) were used to estimate the values of some distribution and elimination parameters needed for the simulation. No significant correlations were found between these parameters and the chain lengths. The model was finally validated for five perfluoroalkyl substances.  相似文献   
42.
Vivianite is often found in reducing environments rich in iron and phosphorus from organic debris degradation or phosphorus mineral dissolution. The formation of vivianite is essential to the geochemical cycling of phosphorus and iron elements in natural environments. In this study, extracellular polymeric substances (EPS) were selected as the source of phosphorus. Microcosm experiments were conducted to test the evolution of mineralogy during the reduction of polyferric sulfate flocs (PFS) by Shewanella oneidensis MR-1 (S. oneidensis MR-1) at EPS concentrations of 0, 0.03, and 0.3 g/L. Vivianite was found to be the secondary mineral in EPS treatment when there was no phosphate in the media. The EPS DNA served as the phosphorus source and DNA-supplied phosphate could induce the formation of vivianite. EPS impedes PFS aggregation, contains redox proteins and stores electron shuttle, and thus greatly promotes the formation of minerals and enhances the reduction of Fe(III). At EPS concentration of 0, 0.03, and 0.3 g/L, the produced HCl-extractable Fe(II) was 107.9, 111.0, and 115.2 mg/L, respectively. However, when the microcosms remained unstirred, vivianite can be formed without the addition of EPS. In unstirred systems, the EPS secreted by S. oneidensis MR-1 could agglomerate at some areas, resulting in the formation of vivianite in the proximity of microbial cells. It was found that vivianite can be generated biogenetically by S. oneidensis MR-1 strain and EPS may play a key role in iron reduction and concentrating phosphorus in the oligotrophic ecosystems where quiescent conditions prevail.  相似文献   
43.
The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells’ periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes.  相似文献   
44.
污染土壤添加有机物质对黑麦草吸收铜的影响   总被引:2,自引:0,他引:2  
研究了泥炭和堆肥对铜污染土壤盆栽黑麦草吸收铜状况的影响。结果表明 ,黑麦草地上、地下部含铜量皆随土壤污染水平提高而增加 ,地下部的增幅远大于地上部 ;添加有机物质明显降低了黑麦草地上、地下部的含铜量 ,平均降幅近 3 0 %。泥炭降低黑麦草地上、地下部含铜量的作用随土壤污染水平的提高而逐渐变小 ,而堆肥的作用至重度污染水平仍较明显 ;在近 4 0 0mg/kg铜污染水平上 ,有机物质表现出最佳降低植株铜吸收量的效果。有机物质的控制作用与土壤pH有关 ,并在 3茬黑麦草的试验期间内得以维持  相似文献   
45.
Abstract

The effects of Fe(II), Mn(II) and humic substances on the catalyzed ozonation of alachlor, an endocrine disruptor were investigated. Results revealed that small amounts of Fe(II), Mn(II), and humic substances could enhance the ozonation of alachlor, but larger amounts of them would retard the oxidation. These results were successfully identified by an electron paramagnetic resonance (EPR) spectroscopy/spin-trapping method that could quantify hydroxyl radicals. The production of hydroxyl radicals was obviously increased with the increasing of Fe(II) concentration, which contributed to enhance ozonation at low concentrations. But the excess Fe(II) consumed some of the radicals when it was added at a higher concentration (1.5 mg/L). However, no obvious radicals were observed when a different amount of Mn(II) was used, and the catalytic ozonation of alachlor by Mn(II) mainly followed the mechanism of “active sites created on the surface of MnO2.” The radical pathway was followed when alachlor was ozonated with different concentrations of humic substances because of its radical initiating, promoting, and inhibiting effects.  相似文献   
46.
The leachates from 22 municipal solid waste (MSW) landfill sites in Southern Poland were characterized by evaluation of chemical, microbiological and ecotoxicological parameters. Chemical analyses were mainly focused on the identification of the priority hazardous substances according to Directive on Priority Substances, 2008/105/EC (a daughter directive of the WFD) in leachates. As showed, only five substances (Cd, Hg, hexachlorobutadiene, pentachlorobenzene and PAHs) were detected in the leachates. The compounds tested were absent or present at very low concentrations. Among them, only PAHs were found in all samples in the range from 0.057 to 77.2 μg L−1. The leachates were contaminated with bacteria, including aerobic, psychrophilic and mesophilic bacteria, coliform and fecal coliforms, and spore-forming-bacteria, including Clostridium perfringens, and with filamentous fungi. From the analysis of specific microorganism groups (indicators of environmental pollution by pathogenic or opportunistic pathogenic organisms) it can be concluded that the landfill leachates showed sanitary and epidemiological hazard. In the ecotoxicological study, a battery of tests comprised of 5 bioassays, i.e. Microtox®, Spirotox, Rotoxkit F™, Thamnotoxkit F™ and Daphtoxkit F™ magna was applied. The leachate samples were classified as toxic in 13.6%, highly toxic in 54.6% and very highly toxic in 31.8%. The Spirotox test was the most sensitive bioassay used. The percentage of class weight score was very high - above 60%; these samples could definitely be considered seriously hazardous and acutely toxic to the fauna and microflora.No correlations were found between the toxicity values and chemical parameters. The toxicity of leachate samples cannot be explained by low levels of the priority pollutants. It seems that other kinds of xenobiotics present in the samples at subacute levels gave the high aggregate toxic effect.The chemical, ecotoxicological and microbiological parameters of the landfill leachates should be analyzed together to assess the environmental risk posed by landfill emissions.  相似文献   
47.
Membrane bioreactor biofouling is usually described as an extracellular matrix in which biopolymers, inorganic salts and active microbes co-exist. For that reason, biomineralization (BM) models can be useful to describe the spatial organization and environmental constraints within the referred scenario. BM arguments were utilized as background in order to (1) evaluate CaCO3 influence on flux decline; pore blocking and cake layer properties (resistance, permeability and compressibility) in a wide range of Chitosan/Bovine serum albumin (BSA) mixtures during step-pressure runs and, (2) perform membrane autopsies in order to explore the genesis of mineralized extracellular building blocks (MEBB) during cake layer build up. Using low molecular weight chitosan (LC) and BSA, 2 L of 5 LC/BSA mixtures (0.25-1.85 ratio) were pumped to an external ultra filtration (UF) membrane (23.5 cm2, hydrophobic, piezoelectric, 100 kDa as molecular weight cut-off). Eight different pressure steps (40 ± 7 to 540 ± 21 kPa) were applied. Each pressure step was held for 900 s. CaCO3 was added to LC/BSA mixtures at 0.5, 1.5 and 3 mM in order to create MEBB during the filtration tests. Membrane autopsies were performed after the filtration tests using thermo gravimetric, scanning microscopy and specific membrane mass (mg cm−2) analyses. Biopolymer-CaCO3 step-pressure filtration created compressible cake layers (with inner voids). The formation of an internal skeleton of MEBB may contribute to irreversible fouling consolidation. A hypothesis for MEBB genesis and development was set forth.  相似文献   
48.
The interactions between metals (Ca2+ and Hg2+) and extracellular polymeric substances (EPS) extracted from the aerobic and anaerobic sludge in wastewater treatment reactors were investigated using a combination of zeta potential measurement and 3-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy with parallel factor (PARAFAC) analysis. Results show that Ca2+ had no substantial effects on the EEM fluorescence spectra of the EPS, but their zeta potentials increased with the increasing Ca2+ dosage. However, Hg2+ had a significant effect on the EEM fluorescence spectra of the EPS, while their zeta potentials seemed not to be affected by the dose of Hg2+. The interactions between Hg2+ and EPS were elucidated using the fluorescence quenching with PARAFAC analysis, while the interactions between Ca2+ and EPS were evaluated by the zeta potential technique. The binding constants for Hg2+ and EPS were two orders of magnitude higher than those for Ca2+ and EPS, suggesting that the binding mechanisms between Ca2+ and EPS were different from those between Hg2+ and EPS. The results might be useful for understanding the roles of EPS in bacterial self-protection against heavy metals and the aggregate formation mechanisms through ionic bridging interactions.  相似文献   
49.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   
50.
研究了Fenton氧化技术在改善污泥脱水性能方面的效果,以污泥比阻和毛细吸水时间来表征污泥的脱水性能,探讨了体系的pH和反应时间对污泥脱水性能的影响以及Fenton氧化对污泥溶解性物质(SCOD+多聚糖+蛋白质)含量的影响研究表明,Fenton氧化能够明显改善污泥的脱水性能。在体系的pH=3时,反应1h后,Fenton氧化处理后污泥的CST从处理前的130.9s减少到19.7s,降幅85%;污泥SRF从处理前的3.58×108 s2/g降低到1.05×107 s2/g,降幅97%。同体系处理污泥SCOD、上清液中多聚糖和蛋白质的含量分别增加了3.7倍、2.6倍和1.5倍。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号