首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   28篇
  国内免费   109篇
安全科学   72篇
废物处理   22篇
环保管理   81篇
综合类   260篇
基础理论   75篇
污染及防治   89篇
评价与监测   53篇
社会与环境   15篇
灾害及防治   15篇
  2023年   8篇
  2022年   11篇
  2021年   18篇
  2020年   13篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2016年   13篇
  2015年   22篇
  2014年   18篇
  2013年   25篇
  2012年   26篇
  2011年   27篇
  2010年   20篇
  2009年   26篇
  2008年   25篇
  2007年   49篇
  2006年   35篇
  2005年   33篇
  2004年   25篇
  2003年   38篇
  2002年   32篇
  2001年   20篇
  2000年   30篇
  1999年   22篇
  1998年   25篇
  1997年   21篇
  1996年   8篇
  1995年   14篇
  1994年   15篇
  1993年   5篇
  1992年   11篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有682条查询结果,搜索用时 93 毫秒
581.
Background and Goal The object of Green Chemistry is the reduction of chemical pollutants flowing to the environment. The Chemistry and the Environment Division of EuCheMS has assumed Green Chemistry as one of its areas of interest, but one question to solve is where Green Chemistry should be placed within the context of Chemistry and the Environment. The concept of Green Chemistry, as primarily conceived by Paul Anastas and John Warner, is commonly presented through the Twelve Principles of Green Chemistry. However, these Twelve Principles, though fruit of a great intuition and common sense, do not provide a clear connection between aims, concepts, and related research areas of Green Chemistry. These two unsolved questions are the object of the present article.Discussion Green Chemistry is here placed as a part of Chemistry for the Environment, concerning the still non-existent pollutants. Indeed, the object of Green Chemistry is the reduction of pollution and risks by chemicals by avoiding their generation or their introduction into the biosphere. The distinction between pollutant chemicals and dangerous chemicals, along with the consideration of the exhaustion of fossil resources and the acknowledgement of the harmful effects of the chemicals employed in a great variety of activities, leads to the recognition of four general objectives for Green Chemistry. In order to accomplish these general objectives, a number of strategies, or secondary objectives and some fundamental concepts, namely, atomic economy, selectivity, potential harm or historical harm can be visualized. A connection is finally established between the strategies and current and future research areas of Green Chemistry.Conclusion The ultimate aim of green chemistry is to entirely cut down the stream of chemicals pouring into the environment. This aim seems unattainable at present, but progress in the green chemical research areas and their application through successive approaches will certainly provide safer specialty chemicals and much more satisfactory processes for the chemical industry.- * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on ‘Chemistry and Environment’, 29 August to 1 September 2004, Bordeaux, France.  相似文献   
582.
Background LCA is the only internationally standardized environmental assessment tool (ISO 14040-43) for product systems, including services and processes. The analysis is done ‘from cradle-to-grave’, i.e. over the whole life cycle. LCA is essentially a comparative method: different systems fulfilling the same function (serving the same purpose) are compared on the basis of a ‘functional unit’ - a quantitative measure of this function or purpose. It is often believed that LCA can be used for judging the (relative) sustainability of product systems. This is only partly true, however, since LCA is restricted to the environmental part of the triad ‘environment/ecology - economy - social aspects (including intergenerational fairness)’ which constitutes sustainability. Standardized assessment tools for the second and the third part are still lacking, but Life Cycle Costing (LCC) seems to be a promising candidate for the economic part. Social Life Cycle Assessment still has to be developed on the basis of known social indicators.Method and Limitations LCA is most frequently used for the comparative assessment or optimization analysis of final products. Materials and chemicals are difficult to analyse from cradle-to-grave, since they are used in many, often innumerable product systems, which all would have to be studied in detail to give a complete LCA of a particular material or substance! This complete analysis of a material or chemical is evidently only possible in such cases where one main application exists. But even if one main application does exist, e.g. in the case of surfactants (chemicals) and detergents (final products), the latter may exist in a great abundance of compositions. Therefore, chemicals and materials are better analysed ‘from cradle-to-factory gate’, leaving the analysis of the final product(s), the use phase and the ‘end-of-life’ phases to specific, full LCAs.Conclusion A comparative assessment of production processes is possible, if the chemicals (the same is true for materials) produced by different methods have exactly the same properties. In this case, the downstream phases may be considered as a ‘black box’ and left out of the assessment. Such truncated LCAs can be used for environmental comparisons, but less so for the (environmental) optimization analysis of a specific chemical: the phases considered as ‘black box’ and left out may actually be the dominant ones. A sustainability assessment should be performed at the product level and contain the results of LCC and social assessments. Equal and consistent system boundaries will have to be used for these life cycle tools which only together can fulfil the aim of assessing the sustainability of product systems.  相似文献   
583.
A ground-based Differential Absorption Lidar was employed to study the dynamics of atmospheric O3 within the planetary boundary layer of a basin in the 'Fichtelgebirge' mountains, NE Bavaria. In particular, the night-time dynamics of O3 linked to the ground were investigated. The Lidar system measured vertical profiles of O3 up to 1 km above ground. For detailed analysis of the night-time dynamics of ozone, supplementary data from three ground-based stations (measuring mixing ratios of O3 and NO(x), as well as meteorological parameters) are essential. The Lidar results could be evaluated with these data from various altitudes above the basin floor. For the station with the largest (vertical) distance to the ground-based Lidar, the agreement was very good at all times. The Lidar method proved to be useful for examining the spatial distribution of O3. The observed night-time decrease of O3 at the bottom of the basin was due to deposition and to advection of air masses containing less O3 from the mountain slopes.  相似文献   
584.
Moon HB  Lee SJ  Choi HG  Ok G 《Chemosphere》2005,58(11):1525-1534
Bulk atmospheric samples (wet and dry) were collected monthly throughout a year at urban and suburban areas of Korea to assess the deposition flux and seasonal variations of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The PCDDs/DFs deposition fluxes ranged from 1.0 to 3.7 ng TEQ/m2/year in the urban area and from 0.5 to 4.6 ng TEQ/m2/year in the suburban area. The deposition fluxes of PCDDs/DFs in this study were comparable to or lower than those previously reported at different locations. The atmospheric deposition fluxes of particles and PCDDs/DFs in winter tended to be higher than those in summer. However, monthly variations between particle and PCDDs/DFs deposition fluxes were small, and the correlation coefficients between the deposition fluxes of air particles and each homologue group of PCDDs/DFs varied according to the degree of chlorination of the homologue group. The deposition velocity of PCDDs/DFs in the urban area was estimated at 0.04 cm/s, which is a lower value than those found in other studies. The two most likely factors affecting the monthly variation of deposition fluxes are the ambient temperature and the amount of precipitation. In particular, the ambient temperature had an influence on the lower chlorinated homologues of PCDDs/DFs while precipitation had an influence on the higher chlorinated PCDDs/DFs. The PCDDs/DFs profiles in atmospheric deposition bulk samples showed a similar pattern at the urban and suburban sites. The possibility of the loading of PCDDs/DFs by Asian dust events could be partly confirmed by investigation of homologue profiles.  相似文献   
585.
Summary. Following herbivory, induced responses involving plant secondary metabolites have been reported in a number of tree species. Although a wide range of plant secondary metabolites appear to operate as constitutive plant defences in trees belonging to the Eucalyptus genus, no induced responses have as yet been reported following foliar-chewing insect damage. We empirically tested whether branch defoliation (artificial and larval) of 2-year-old Eucalyptus globulus Labill. trees altered the abundance of specific plant secondary metabolites immediately (3 months after initial larval feeding) and 8 months after the cessation of larval feeding. Metabolites assayed, included essential oils, polyphenolic groups and foliar wax compounds and in all cases their abundance was not significantly altered by defoliation. However, the level of foliar tannins after 3 months of larval feeding did display a trend that suggested elevated levels as the result of defoliation, though this trend was not evident 8 months later, indicating that, if real, the response was a rapid and not a delayed induced response. The level of foliar tannins was also negatively correlated to both average larval survival and average percentage branch defoliation, suggesting that foliar tannins may operate as toxins and/or anti-feedants to M. privata larval feeding.  相似文献   
586.
Organic synthesis is usually performed in solution to dissolve both reactants and catalysts and to deliver heat. Here, we show that glycerol, which is a non-toxic, biodegradable, and recyclable liquid manufactured from renewable sources, has a high potential to serve as alternative green solvent for organic reactions. Several catalytic and non-catalytic reactions were successfully performed in glycerol. High products yields and selectivities were achieved. Besides solubility of the reactants and the catalysts and easy separation of the product, glycerol offers several other benefits such as catalyst recycling, microwave assisting reaction, and biphasic and emulsion modes.  相似文献   
587.
何素兰 《灾害学》1995,10(2):52-57
本文以华南地区1951~1990年41个代表站的逐月降水资料序列,采用各时段的降水距平百分率和累积频率来分析近40年来降水变化特征和旱涝年的变化趋势.并通过功率谱分析的方法找出该地区降水的主要变化周期。  相似文献   
588.
含硫污水处理方法综述   总被引:1,自引:1,他引:1  
本文参考国内外文献及技术资料,较全面地论述了各种含硫污水处理方法的优缺点,供从事油气田污水处理的同志参考。  相似文献   
589.
ABSTRACT: Topographic maps are commonly used to define populations of lakes in regional surveys of surface water quality. To illustrate the effect of different maps on that process, we compared the lakes represented on the 1:250,000-scale maps used for the Northeast Region of the Eastern Lake Survey—Phase I (ELS-I) to the lakes on a sample of large-scale maps (1:24,000 or 1:62,500). Lake areas at or near the lower limit of representation delimited “smallest-lake” values for the compared 1:250,000-scale maps. The regional median for these values was 4.5 hectares (ha) and ranged from 0.6 to 24.8 ha. Lake representation is influenced by cartographic limitations such as map scale, age, and complexity as well as the inherent variability of waterbodies (e.g., water level fluctuations or the creation of reservoirs, beaver impoundments, and oxbows). The total number of lakes on large-scale maps increased markedly as lake area decreased. Approximately 15,700 of the estimated 29,000 lakes in the EPA's Northeast Region were 1 to 4 ha in area. Because maps affect the size distribution of lakes included in a regional survey and because lake areas are thought to modify lake chemistry, maps ultimately affect the estimates of regional surface water quality.  相似文献   
590.
A series of experiments using bulk precipitation collectors of the type used in the UK precipitation chemistry network measured the amounts of NH4+, SO42− and other ions that could be washed from funnels (diameter 15 cm) exposed to a wide range of NH3 and SO2 concentrations over periods from hours to days. In dry conditions, the average deposition flux of NH3 was between 50 and 120 nmol NH4+ funnel−1 d−1 (0.1–0.3 kg N ha−1 yr−1), and was independent of the concentration of NH3. Dry deposition of NH3 to wet funnels at small NH3 concentrations was almost 5 times that to dry funnels under the same conditions (average 240 nmol funnel−1 d−1; 0.7 kg ha−1 yr−1), and increased with increasing NH3 concentrations. The amount of NH4+ ions remaining on the funnel surface was inversely proportional to the vapour pressure deficit during the experiment. This result was interpreted as a dependence on the duration of surface wetness, with greater deposition of NH4+ when evaporation rates of surface water were small.The amount of SO2 deposited on funnel surfaces was closely related to the amount of NH3 deposited, in both wet and dry conditions, but was not strongly correlated with the SO2 concentration. At low NH3 and SO2 concentrations the average deposition to dry funnels was 70 nmol SO42− funnel−1 d−1 (0.5 kg ha−1 yr−1), and to wet funnels was approximately 2.5 times larger. The results are interpreted in terms of the balance between the rate of evaporation of surface water, and the rate of oxidation of SO2, which leads to the ‘fixing’ of NH4+ ions on the surface as involatile salts.It is predicted that dry deposition of NH3 to funnel surfaces across the UK Secondary Network could account for as much as one-half of the measured bulk wet deposition at sites where wet deposition of NH4–N is small. The amount of dry deposition depends on how long and how often funnel surfaces are wetted by rain or dew, and on the air concentrations of NH3. These predictions are based on funnels being wetted only once per day. More frequent wetting would increase the contribution from dry deposition, and the consequent overestimate of wet deposition of NH4–N across the UK by using data obtained from bulk collectors. To some extent this overestimate may be offset by microbial degradation and loss of NH4–N in weekly bulk precipitation samples during collection and storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号