首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   1篇
  国内免费   3篇
安全科学   89篇
废物处理   3篇
环保管理   10篇
综合类   25篇
基础理论   1篇
污染及防治   2篇
评价与监测   5篇
  2023年   6篇
  2022年   2篇
  2021年   13篇
  2020年   8篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   10篇
  2013年   8篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   5篇
  2001年   4篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1993年   1篇
  1992年   1篇
排序方式: 共有135条查询结果,搜索用时 140 毫秒
71.
运用数值模拟的方法研究了单喷嘴射流撞击井底时产生的冲击压力及其分布规律。研究结果表明,井底最大冲击压力梯度所在的位置距撞击中心约0.114倍喷距处,井底最大冲击压力梯度和射流喷速成正比,和喷距成反比,本文绘出了其数学表达式。数值计算结果和室内实验数据吻合较为一致。  相似文献   
72.
This paper aims at contributing to the efficient design of explosion protection systems against confined explosions. The issue addressed concerns the quantitative estimation of the protective effect of explosion relief vents in the case of confined explosions inside tunnels. A series of virtual experiments performed by computer simulation, revealed how the number of vents, their diameter, as well as the angle between the vents and the tunnel, influences the blast wave attenuation. The computational study was performed considering a complicated large-scale tunnel configuration with branches on its half portion. The purpose was the calculation of the attenuation effect due to the presence of vents by comparing the total explosion-specific impulse developing at antidiametric positions inside the tunnel. Simulations were carried out via a three-dimensional numerical model built in the computational fluid dynamics code CFX 5.7.1, which has been validated in previous papers against experimental overpressure histories data demonstrating reasonable performance. Computer results showed that the use of branch vents provides an effective method for shock wave attenuation following an explosion, whereas their statistical elaboration revealed that the attenuation is mainly affected by the number of vents and their diameter. In contrast, the angle between the side vents and the main tunnel appeared to slightly affect the pressure wave weakening. Eventually, the quantitative influence of the above parameters was effectively illustrated in functional diagrams, so that the total attenuation effect may be promptly estimated, if the design variables are known. In addition, two statistical models with reasonable fitting to the calculated data are proposed, which express the attenuation effect as a dependent variable of the design variables including their interactions.  相似文献   
73.
Foam is used as part of an effective dust suppression method in underground coal mines, but conventional foaming devices severely restrict its popularization and application due to the high cost of foam preparation, poor applicability and high pressure loss. Therefore, a new spiral mesh foam generator is designed, and its performance is investigated and evaluated experimentally. The results show that the pressure gradient of the spiral mesh foam generator increases with the increase of foam concentration in water. There is a large pressure gradient gap between the top and bottom at both ends of the foam generator. However, the gap disappears and uniform foam is generated in the middle section of the foam generator. When the pressure gradient is higher than minimum pressure gradient, the foam production quantity will increase sharply. Based on the length of spiral mesh and operating conditions determined, the new foam generator is applied to produce foam for dust suppression in the heading face of coal mines. A good foaming effect, less pressure loss and high dust suppression efficiency suggest that the new foam generator will greatly promote the large-scale application of foam technology used to suppress dust in underground coal mines.  相似文献   
74.
Pressure piling presents a major explosion hazard in interconnected process vessels. Pressure enhancement in the secondary vessel due to the acceleration of the flame through the connecting pipe can generate a disproportionately more violent explosion than would have been expected based on the concentration of dust in the secondary vessel. Pressure piling is a very complex phenomenon that is difficult to investigate through experimentation. Advanced computational fluid dynamics (CFD) modelling is a promising route to accurately account for all the complexities associated with pressure piling.In this paper, the current state of knowledge concerning pressure piling is presented. Further, the effects of varying the length-to-diameter ratio (L/D) of the primary vessel (Vessel 1) on pressure piling was investigated using numerical modelling. The volumes and volume ratio of the interconnected vessels were kept constant while the L/D of Vessel 1 was varied from 0.5 to 15. The simulations of coal dust explosion were performed using the coalChemistryFoam solver from OpenFOAM version 5.0.1. It is hoped that the findings from this study provide insight into the effects of the geometrical design of interconnected vessels, particularly L/D, on pressure piling. Additionally, this work has implications for the optimal placement of explosion isolation devices intended to actuate before the flame front and pressure escape to downstream vessels.  相似文献   
75.
Incidents involving uncontrolled chemical reactions continue to result in fatality, injury and economic loss. These incidents are often the result of inadequate pressure relief system designs due to a limited knowledge of the chemical reactivity hazard. A safe process design requires knowledge of the chemical reactivity of desired as well as undesired chemical reactions due to upset conditions. Simplified, cost effective methods to relief system sizing are presented by The Design Institute of Emergency Relief Systems (DIERS). They require multiple experiments, and sizing is only valid for the system composition and thermal inertia represented by the small scale experiments. Results are often conservative, especially for gassy systems. Detailed, dynamic computer simulation is highly accurate and can be used for iterative design and multiple scenario evaluation.In this study, an accelerating rate calorimeter (ARC®) and a low thermal inertia calorimeter (automatic pressure tracking adiabatic calorimeter – APTAC™) were used to collect chemical reactivity data for the dicumyl peroxide and toluene system. Results of the pressure relief system sizing using the dynamic simulation method are presented and compared with DIERS simplified methods.  相似文献   
76.
The noise included in pipeline pressure signal is a small noise whose energy takes a small proportion of pressure signal and is concentrated on high frequency components. However, it will influence pipeline leakage identification and even cause false alarms. Thus, a small-noise reduction method based on EMD (SNR-EMD) is proposed to remove small noise from pressure signal. EMD is applied for extracting the mean envelope of the signal. Then, small fluctuations around the mean envelope are considered to be small noises. Meanwhile, end effect of SNR-EMD is restrained by extrema mirror extension (EME). The results of simulation studies with SNR-EMD show that the larger the noisy signal's signal-to-noise ratio (SNR) is, the better noise reduction effect becomes. And SNR-EMD considered as a low-pass filter removes or reduces the high frequency components. Furthermore, superiorities of SNR-EMD are verified by comparison studies with wavelet packet transform (WPT) and singular value decomposition (SVD). Finally, a case study of leakage identification shows that SNR-EMD can improve the performance of leakage identification and reduce the possibility of false alarms, which makes much easier and further effective to distinguish the leakage mode from other modes after removing noise from pressure signal.  相似文献   
77.
在采场均压防灭火实验室模型模拟实验的基础上 ,总结了煤峪口矿现场实施火区的调压工艺技术。该技术包括利用调压气室平衡火区风压、提高工作面风压和堵塞地表裂隙 3项调压措施 ,其防灭火效果十分显著。在这 3项措施中 ,无论是工作面升压或气室调压失效 ,此时填堵裂隙工程则会发挥重要作用  相似文献   
78.
This paper presents a simple methodology for estimating pressure pressure buildup due to the injection of supercritical CO2into a saline formation, and the limiting pressure at which the formation starts to fracture. Pressure buildup is calculated using the approximate solution of Mathias et al. [Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W., 2009. Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media. doi:10.1007/s11242-008-9316-7], which accounts for two-phase Forchheimer flow (of supercritical CO2 and brine) in a compressible porous medium. Compressibility of the rock formation and both fluid phases are also accounted for. Injection pressure is assumed to be limited by the pressure required to fracture the rock formation. Fracture development is assumed to occur when pore pressures exceed the minimum principal stress, which in turn is related to the Poisson’s ratio of the rock formation. Detailed guidance is also offered concerning the estimation of viscosity, density and compressibility for the brine and CO2. Example calculations are presented in the context of data from the Plains CO2 Reduction (PCOR) Partnership. Such a methodology will be useful for screening analysis of potential CO2 injection sites to identify which are worthy of further investigation.  相似文献   
79.
To investigate the effects of cylinders placed parallel to the venting direction on the structural response of the vessel walls to an explosion, 25 batches of vented explosion tests were conducted in a 1 m3 rectangular vessel. Two types of structural response with different amplitudes and frequency distributions were observed and evaluated by comparing the vibration data with both the pressure data and high-speed videos. A low-amplitude structural response of approximately 150–250 m/s2, which increased slightly as VBR increased, was triggered by a combination of the initial flame propagation, external explosion, Helmholtz oscillations, and the Taylor instability. A high-amplitude structural response of approximately 9500 m/s2 was also observed, which decreased sharply as VBR increased. Additionally, the high amplitude response was never observed when more than two cylinders were present in the vessel. The high amplitude response was triggered due to the coupling between the acoustic wave, the flame, and the resonance of the vessel. The presence of obstacles did not increase the severity of the structural responses under the current experimental conditions. To the contrary, the presence of obstacles in the container attenuated or even inhibited the high-amplitude vibration of the container caused by the explosion.  相似文献   
80.
This paper introduces a new approach to prioritize urban planning projects according to their environmental pressure in an efficient and reliable way. It is based on the combination of three procedures: (i) the use of environmental pressure indicators, (ii) the aggregation of the indicators in an Environmental Pressure Index by means of the Analytic Network Process method (ANP) and (iii) the interpretation of the information obtained from the experts during the decision-making process.The method has been applied to a proposal for urban development of La Carlota airport in Caracas (Venezuela). There are three options which are currently under evaluation. They include a Health Club, a Residential Area and a Theme Park. After a selection process the experts chose the following environmental pressure indicators as ANP criteria for the project life cycle: used land area, population density, energy consumption, water consumption and waste generation. By using goal-oriented questionnaires designed by the authors, the experts determined the importance of the criteria, the relationships among criteria, and the relationships between the criteria and the urban development alternatives.The resulting data showed that water consumption is the most important environmental pressure factor, and the Theme Park project is by far the urban development alternative which exerts the least environmental pressure on the area. The participating experts coincided in appreciating the technique proposed in this paper is useful and, for ranking ordering these alternatives, an improvement from traditional techniques such as environmental impact studies, life-cycle analysis, etc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号