首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   157篇
  国内免费   735篇
安全科学   36篇
废物处理   35篇
环保管理   31篇
综合类   1152篇
基础理论   120篇
污染及防治   71篇
评价与监测   82篇
社会与环境   9篇
灾害及防治   3篇
  2024年   13篇
  2023年   58篇
  2022年   81篇
  2021年   102篇
  2020年   101篇
  2019年   99篇
  2018年   96篇
  2017年   56篇
  2016年   67篇
  2015年   71篇
  2014年   59篇
  2013年   79篇
  2012年   66篇
  2011年   62篇
  2010年   48篇
  2009年   54篇
  2008年   42篇
  2007年   56篇
  2006年   46篇
  2005年   34篇
  2004年   34篇
  2003年   25篇
  2002年   29篇
  2001年   28篇
  2000年   31篇
  1999年   12篇
  1998年   17篇
  1997年   8篇
  1996年   13篇
  1995年   4篇
  1994年   4篇
  1993年   12篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
排序方式: 共有1539条查询结果,搜索用时 78 毫秒
921.
高浓度气溶胶在受人类活动影响的污染地区种类和组成非常复杂,因此,其环境和气候效应引起了广泛关注,但在超大城市背景下气溶胶粒子活化成为云凝结核的过程与边界层的相互作用尚不完全清楚.本研究基于北京(BJ)、上海(SH)、广州(GZ)的观测数据,选取3个城市的春季和冬季(北京冬季11月和广州冬季12月的连续观测,以及上海春季4月的加强观测)集成观测气溶胶数据和云凝结核同期观测的变化并结合其他污染物演化规律,对比分析了新粒子生成事件和环境变量演化对3个超大城市云凝结浓度形成的影响.结果表明,以用云凝结核(CCN)浓度与气溶胶(CN)数浓度的比值作为3个城市的活化率,北京CCN数浓度约为(500±200) #·cm-3,CN最大浓度小于(1.0×104±0.3×104) #·cm-3,活化率约为0.07%.上海CCN数浓度为(1500±500) #·cm-3,CN最大浓度小于(98.0×104±0.3×104) #·cm-3,最大活化率为0.05%.广州CCN数浓度为(150±30) #·cm-3,CN最大浓度为(24.0×103±0.3×103) #·cm-3,最大活化率为0.03%.本文旨在阐明气溶胶物理化学性质(粒子谱、化学成分、排放源等的时空演变特征)在不同排放源和大气边界层条件的影响下,造成不同类型的排放和输送过程对气溶胶活化率的影响,对比发现新粒子生成(NPF)期间CCN数浓度明显高于非新粒子生成(Non-NPF)时期,证明NPF发生时对CCN的活化率(AR)有显著的提升,在过饱和度SS=0.1%下,北京达到峰值在4×10-3附近,广州的最大值约为17×10-4,上海的最大值为3×10-3.且在NPF期间气溶胶活化率显著增加,3个超大城市在NPF和Non-NPF期间,CCN数浓度与活化率的关系在上海尤其明显,化学成分包括有机物、硝酸盐和硫酸盐等物质也会影响超大城市地区气溶胶粒子的活化率,对比发现3个城市在NPF期间CCN数浓度和活化率都明显区别于其他时段.发现气溶胶的物理和化学性质以及与活化率的直接关系,可用以评估新粒子生成对区域大气环境(如霾)的影响,并估计气溶胶贡献为CCN的间接气候影响.  相似文献   
922.
沙尘天气会危害人体健康并直接影响城市运行,当沙尘天气发生后,针对其清除过程及动力学机制鲜有研究.本文利用北京地区地面观测资料、风廓线雷达数据、四维变分多普勒雷达分析系统(Variational Doppler Radar Analysis System,VDRAS)数据、气溶胶激光雷达监测资料等,对比分析了2018年3月27—28日明显浮尘和2021年3月15日强沙尘暴天气的沙尘清除过程,研究了不同大气环流背景下的沙尘减弱消散动力机制.结果表明,在3月27—28日偏东风天气背景下:①北京地区沙尘浓度垂直分布及变化与高空槽及偏东风的强度垂直分布有紧密关系;②浮尘天气中,偏东风在1~1.5 km之上随高度减弱形成上升气流,与短波槽耦合,将高浓度气溶胶向高空输送;而1 km以下偏东风向 地面风速减小,有利于下沉运动,不利于气溶胶向高层扩散,造成中层浓度降低;③随着2.5 km以下偏东风加强至低空急流,并随高度增加, 上升运动显著增大,高浓度气溶胶被抬至高层并向下游输送,配合气团更迭,完成浮尘清除.而在3月15日强沙尘暴过程中:④沙尘浓度垂直分布变化与上游传输及低层强下沉运动有关,1 km以下沙尘浓度首先下降,主要由低层大气辐散下沉及沉降作用导致,而高空西北气流的 传输作用使得1~2.5 km高浓度沙尘粒子维持时间较长,垂直出现分层结构;⑤冷锋后西北气流天气形势下,沙尘的清除机制在于整层强烈的下沉运动与自然沉降的叠加效应,配合清洁气团更迭,完成清除过程.  相似文献   
923.
为揭示四川盆地气溶胶光学厚度(AOD)的空间分布格局并定量评估影响其时空分异的驱动因子,基于2003~2018年(16a) MODIS气溶胶产品数据,采用Mann-Kendall突变检验法,空间自相关,空间热点探测分析和地理探测器等地统计方法分析研究.结果表明:2003~2018年四川盆地AOD总体呈现下降趋势,且突变年为2015年,并依据趋势变化将2003~2018年分为6个时段.四川盆地气溶胶区域性污染特征明显,AOD高值区主要聚集在盆地中部低海拔地区,而AOD低值区则多聚集在盆地边缘高海拔地区.AOD空间分布具有显著的聚集性规律(空间正相关,Moran's I指数>0),自2012年以来高-高值聚集区面积不断减小,且不同时段聚集区AOD年际变化与AOD值分布变化态势一致.利用主成分分析法优选出8个因子,经地理探测器分析表明,16a来盆地区域AOD时空分异主要是由于城市化和工业化发展水平不均衡引起的.2014~2015年所有驱动因子的驱动力较之前时间段出现11.2%~59.2%的减小,且社会经济因子尤为明显,与2015年为突变年的结论相一致.  相似文献   
924.
为揭示酸性矿山不同植被恢复措施下碱性磷酸酶基因(phoD)细菌群落特征及其与重金属的关系,以赣州龙南稀土矿区为研究区域,收集了5种植被(百喜草、香根草、桉树、玉兰、芥兰)的土壤,测量不同植被土壤理化性质和重金属含量,利用高通量测序技术分析16S rRNA细菌和phoD基因细菌多样性及其群落特征,并计算phoD基因细菌与重金属含量的相关性. 结果表明:不同植被土壤存在Cd、As、Pb、Mn超过江西省背景值现象,其中桉树、香根草土壤Pb含量分别为背景值的5.96倍、4.4倍,桉树土壤Cd含量为背景值的2.6倍. phoD基因细菌多样性Chao1指数排序为百喜草<香根草<桉树<玉兰<芥兰. 慢生根瘤菌属(Bradyrhizobium)、假单胞菌属(Pseudomonas)、链霉菌属(streptomyces)为主要phoD基因菌属. 相关性分析结果表明,Cd、As、Mn含量与铵态氮、硝态氮呈显著正相关, Cd、As、Pb同phoD基因细菌Chao1指数呈显著负相关, pH、TN、OM、TP、AP与phoD基因细菌多样性呈显著正相关. Heatmap热图显示,新根瘤菌属(Neorhizobium)、kribbella、浮霉状菌属(Planctomyces)、微枝形杆菌属(Microvirga)、紫色杆菌属(Janthinobacterium)、粘杆菌属(Gloeobacter)、Luteolibacter菌属与Pb含量呈显著负相关,孢囊链霉菌属(Streptosporangium)与Cd、As呈显著负相关,慢生根瘤菌属(Bradyrhizobium)、固氮螺旋菌属(Azospirillum)、Singulisphaera与Mn呈显著负相关. 研究结果显示,固氮根瘤、放线菌等类phoD基因细菌与Cd、As、Pb、Mn含量相关性更为明显,本研究可为科学认识土壤重金属与phoD基因细菌关系提供依据.  相似文献   
925.
通过对普通水进行去电子处理,得到可利用性较强的去电子水,但其对好氧堆肥进程的影响还不明确.在牛粪秸秆好氧堆肥过程中添加去电子水,分析堆肥腐熟进程,并通过细菌群落结构变化揭示其作用的微生物学机理.研究结果表明去电子水处理堆肥的电导率(EC)、腐熟度(E4/E6)和C/N分别比对照组降低了48.7%、43.2%和27.9%,堆肥最高温度和种子发芽指数(GI)分别升高了17.5%、30.6%.同时去电子水提高了Glycomyces、Ammoniibacillus、Flavobacterium、Actinomadura和Geobacillus等优势属的相对丰度,改变了细菌群落的分布.冗余分析表明堆肥不同阶段的细菌优势菌属驱动着堆肥温度、pH、EC的变化,提高GI,促进堆肥腐熟.总之,加入去电子水有利于调节堆肥环境,缩短堆肥周期,并增加优势属的相对丰度,提高堆肥产品的稳定性.  相似文献   
926.
基于臭氧检测仪(Ozone Monitoring Instrument,OMI)的遥感数据,利用ArcGIS10.2对2005—2020年中三角地区(湖北省、湖南省、江西省)紫外吸收性气溶胶指数(Ultraviolet Aerosol Index,UVAI)的时空变化进行分析,结合气溶胶颗粒物(PM2.5、PM10)和气态污染物(CO)数据,利用HYSPLIT(Hybrid Single-Particle Lagrangian Integrated Trajectory model)方法研究主要污染城市气溶胶颗粒物的来源与传输路径,通过核密度估计法、相关性分析、聚类分析,研究其影响因素.结果表明:①在空间分布上,中三角地区吸收性气溶胶的高值区集中在襄阳市北部、孝感市 东部、武汉市西部;在时间分布上,2008年UVAI最低,2014年达到最大值;季节分布具有明显变化,2005—2020年吸收性气溶胶指数季均值为冬季>春季>秋季>夏季.②UVAI与人口增长率、第二产业产值占总产值的比重呈正相关性,与节能环保预算支出呈显著负相关(p<0.05). 不同的土地利用方式也是影响吸收性气溶胶空间分布的原因:UVAI低值分布地区的林地密度较高,而城乡、工矿、居民用地密度高的地区 吸收性气溶胶指数均较高.③结合气流输送情况与PM2.5、PM10、CO数据可知,来自湖北省武汉市与麻城市交界的近距离气流携带的气溶胶 颗粒物(PM2.5、PM10)及远距离气流所携带的碳质污染物(CO),会对中三角地区吸收性气溶胶产生影响.④以襄阳市、武汉市为受点城市,对其进行潜在源贡献因子分析(PSCF):2020年襄阳市冬季UVAI的潜在源区主要集中在河南省南部与湖北省东北部地区;2020年武汉市冬季UVAI的潜在源贡献因子(WPSCF)高值区主要分布在湖北省东部、江西省西北部、湖南省东北部.  相似文献   
927.
硝基多环芳烃(NPAHs)广泛存在于大气气溶胶中,是棕色碳的重要组成部分.萘和其他多环芳烃是NPAHs的重要前体物.为研究NO2对NPAHs形成的影响,本文利用气溶胶激光飞行时间质谱仪(ALTOFMS)在线测定不同NO2浓度下萘光氧化形成的二次有机气溶胶(SOA)的NPAHs组分.实验结果表明,NO2对NPAHs的产生和萘SOA的形成有促进作用.通过ALTOFMS在线检测、模糊C均值(FCM)聚类分析,结合离线电喷雾电离质谱验证,测得萘酚和羰基化合物是不存在NO2时萘SOA粒子主要成分,而通过OH-萘加合物和萘酚硝化产生的硝基萘、二硝基萘、硝基萘酚和二硝基萘酚及其衍生物是NO2存在时萘SOA粒子的主要组分.这为城市大气高浓度NOx背景下,研究NPAHs的化学组分和形成机理提供了实验依据.  相似文献   
928.
黑碳(BC)作为最重要的吸收性气溶胶,其辐射强迫显著地改变大气边界层结构和近地面大气污染物的累积。基于2008~2018年武汉市BC和气象要素的观测数据,结合CWT潜在来源模型,分析了BC的时间演变特征和潜在来源分布。结果表明武汉BC平均质量浓度为6 926.4±4 090.6 ng/m3,Ångström指数(AAE)和液体燃料源对BC贡献占比(P)的平均值分别为0.98±0.44和76.6%,BC主要来自液体燃料的燃烧。2014~2017年BC质量浓度呈现显著的下降趋势,液体燃料对BC的贡献逐年增加。BC的季节分布为冬季(8 537.3 ng/m3)>春季(7 513.2 ng/m3)>秋季(6 820.2 ng/m3)>夏季(6 161.9 ng/m3),BCliquid占比为秋季(80.0%)>冬季(77.3%)>春季(76.2%) >夏季(72.9%)。不同季节BC日变化特征不同。四个季节BC日变化在2008~2013年均以单峰型分布为主,而在2016~2017年则为双峰型分布。不同季节BC的潜在来源分布存在显著区别。潜在来源高值区在2008~2010年主要分布于武汉市的西南部,范围较小;而2016~2017年主要集中在武汉市周边地区,范围变大。潜在源区的演变反映了周边城市群对武汉市BC的影响逐渐变大,这可能是造成武汉市BC质量浓度日变化的年际差异的原因。  相似文献   
929.
武汉地区沙尘天气气溶胶粒径分布特性研究   总被引:1,自引:0,他引:1  
通过利用湖北省大气复合污染自动监控预警中心的振荡天平法颗粒物监测仪、光散射法气溶胶粒径谱仪,对武汉地区一次典型沙尘天气过程中记录的不同粒径气溶胶颗粒数量浓度、相对质量浓度进行研究。结果表明,在武汉地区沙尘天气过程中,粗颗粒显著增多,而细颗粒显著减少,这与部分研究发现的沙尘天气过程中粗颗粒与细颗粒共同显著增多的结论有所不同。粒径谱仪分析显示,大于PM5颗粒的增多对粗颗粒浓度增加有显著贡献,而小于PM0.5颗粒的减少则对细颗粒浓度降低有主要贡献,这可能是武汉地区沙尘天气过程颗粒物的变化特点。  相似文献   
930.
珠三角地区不同季节颗粒物数谱分布特性   总被引:4,自引:1,他引:3  
基于珠三角大气超级站不同季节3 nm~10μm颗粒物数谱分布在线监测数据,系统分析不同季节颗粒物数浓度、表面积浓度与体积浓度的水平与构成及数谱分布日变化规律,揭示了珠三角地区颗粒物数谱分布特征。结果表明,冬季、春季和秋季珠三角大气超级站总颗粒物数浓度分别为2.17×104、1.97×104、2.24×104个/立方厘米,总颗粒物表面积浓度分别为2.98×103、2.28×103、2.78×103μm2/cm3,总颗粒物体积浓度分别为1.33×102、1.04×102、1.40×102μm3/cm3。颗粒物总数浓度中,爱根核模和积聚模态颗粒物是主要贡献者,在总数浓度的比例均达到40%以上;总颗粒物表面积浓度中,积聚模态颗粒物是主要贡献者,月平均比例高达88%以上;总颗粒物体积浓度中,积聚模态颗粒物也是主要贡献者,月平均贡献为65%~80%,其次为粗粒子模贡献较大,比例为20%~30%。积聚模态颗粒物的重要贡献较好地体现了超级站的区域性。冬季、春季和秋季颗粒物数浓度平均日变化趋势均为7:00~9:00和18:00~20:00存在较高的爱根核模态颗粒物数浓度,意味着机动车排放对细颗粒物污染的影响较显著。10月颗粒物数谱分布平均日变化中存在明显的颗粒物增长过程,体现了新粒子生成事件的重要影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号