首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2033篇
  免费   256篇
  国内免费   1055篇
安全科学   275篇
废物处理   59篇
环保管理   189篇
综合类   1816篇
基础理论   444篇
污染及防治   304篇
评价与监测   167篇
社会与环境   78篇
灾害及防治   12篇
  2024年   7篇
  2023年   38篇
  2022年   73篇
  2021年   123篇
  2020年   124篇
  2019年   99篇
  2018年   108篇
  2017年   124篇
  2016年   127篇
  2015年   146篇
  2014年   169篇
  2013年   255篇
  2012年   217篇
  2011年   249篇
  2010年   159篇
  2009年   141篇
  2008年   138篇
  2007年   195篇
  2006年   171篇
  2005年   104篇
  2004年   79篇
  2003年   93篇
  2002年   74篇
  2001年   58篇
  2000年   45篇
  1999年   58篇
  1998年   40篇
  1997年   30篇
  1996年   19篇
  1995年   12篇
  1994年   18篇
  1993年   10篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有3344条查询结果,搜索用时 218 毫秒
121.
UNITANK is a biological wastewater treatment process that combines the advantages of traditional activated sludge process and sequencing batch reactor, which is divided into Tank A, B and C. In this study, the sludge distribution and its impact on performance of UNITANK were carried out in Liede Wastewater Plant (WWTP) of Guangzhou, China. Results showed that there was a strong affiliation between Tank A and B of the system in sludge concentration distribution. The initial sludge concentration in Tank A could present the sludge distribution of the whole system. The sludge distribution was mainly influenced by hydraulic condition. Unsteady sludge distribution had an impact on variations of substrates in reactors, especially in decisive reactor, and this could lead to failure of system. Settler could partially remove substrates such as COD and NO3-N, but there was adventure of sludge deterioration. The rational initial sludge concentration in Tank A should be 4000-6000 mg/L MLSS.  相似文献   
122.
This paper presents the experimental investigations of the emissions of SO2, NO and N2O in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N2O were proposed.  相似文献   
123.
Oxidation inhibition of sulfite in dual alkali FGD system   总被引:1,自引:0,他引:1  
A laboratory-scale well-mixed thermostatic reactor with continuously blasting air was used to investigate the oxidation inhibition of sulfite in dual alkali flue gas desulfurization (FGD) system. The effects of operating parameters such as pH value and catalyst concentration on the oxidation were studied. Sodium thiosulfate was used in the system, and was found that it significantly inhabited the sulfite oxidation. In the absence of catalyst, sodium thiosulfate at 12.67 mmol/L had an inhibition efficiency of approximately 98%. While in the presence of catalyst, sodium thiosulfate at 26.72 mmol/L had an inhibition efficiency less than 85.0%. The oxidation reaction order of sulfite in the sodium thiosulfate was determined to be -1.90 and 4).55 in the absence and presence of the catalyst, respectively. Apparent activation energy of oxidation inhibition was calculated to be 53.9 kJ/mol. Pilot tests showed that the consumption rate of thiosulfate agreed well with the laboratory-scale experimental results.  相似文献   
124.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   
125.
To demonstrate the existence of light thresholds in plant growth and to examine the effects of elevated CO2 on the shade tolerance of a tree species, an experiment consisting of a completely randomized design for a total of 96 yellow birch (Betula alleghaniensis Britton) seedlings was conducted with 3 light levels (2.9%, 7.7%, 26.1% of full sunlight)×2 CO2 levels (350 and 700±10 ppm) with 4 replications in a phytotron. The study proved that thresholds exist and they vary in different plant organs. In ambient CO2, the thresholds were 13.3%, 18.7%, 15.0%, 15.2%, and 15.6% of full sunlight for stem, leaf, root, total plant biomass, and the averaged value, respectively. In 700 ppm CO2, the corresponding thresholds were 16.7%, 21.3%, 18.1%, 21.7% and 19.5% for stem, leaf, root, total plant biomass, and the averaged value, respectively. The lowest threshold in the stem is an indicator of the minimal light intensity for regular growth for seedlings of this species. Below this threshold, light-stressful growth occurs. The result of a paired t-test indicated that the thresholds in elevated CO2 were significantly higher than in ambient CO2. This suggests that yellow birch will lose its moderate shade tolerance, evolutionally becoming a shade-intolerant species, and that it may become more difficult to naturally regenerate in the future.  相似文献   
126.
Total suspended particulate mater (TSP) concentrations were monitored for one year from July 2000 and for one year from April 2003 in Jakarta City. Thirteen elemental TSP components, aluminum (Al), sodium (Na), iron (Fe), lead (Pb), potassium (K), zinc (Zn), titanium (Ti), manganese (Mn), bromine (Br), copper (Cu), chromium (Cr), nickel (Ni), and vanadium (V) were analyzed by a sequential X-ray fluorescence spectrometer. Al, Na, Fe, K, and Pb were major components at most of the sampling locations in 2000. However, only Pb in 2003 dramatically decreased to one tenth. The phase-out of leaded gasoline began on July 1, 2001 in Jakarta City and lead content in gasoline decreased to one tenth, too. The decrease in Pb concentration was a result of the phase-out of leaded gasoline, as lead emissions mainly are exhaust gas from vehicles.  相似文献   
127.
Nutrient addition has been proved to be an effective strategy to enhance oil biodegradation in marine shorelines.To determine the optimal range of nutrient concentrations in the bioremediation of oil-polluted beaches,nitrate was added to the simulated shoreline models in the initial concentration of 1,5 and 10 mg/L.Whenever the NO3-N concentration declined to 70% of its original value, additional nutrients were supplemented to maintain a certain range.Results showed adding nutrients increased the oil biodegradation level,the counts of petroleum degrading bacteria(PDB)and heterotrophic bacteria (HB),and the promoted efficiency varied depending on the concentration of nitrate.Oil degradation level in 5 mg/L(NO_3-N)group reached as much as 84.3% accompanied with the consistently highest counts of PDB;while in 1 mg/L group oil removal efficiency was only 35.2%,and the numbers of PDB and HB were relatively low compared to the other groups supplemented with nutrients.Although counts of HB in the 10 mg/L group were remarkable,lower counts of PDB resulted in poorer oil removal efficiency (70.5%) compared to 5 mg/L group.Furthermore,it would need more NO_3-N(0.371 mg)to degrade 1 mg diesel oil in the 10 mg/L group than in the 5 mg/L group(0.197 mg).In conclusion, Nitrate concentration in 5 mg/L is superior to 1 and 10 mg/L in the enhancement of diesel oil biodegradation in simulated shorelines.  相似文献   
128.
The maximum specific methanogenic activity (SMA) of a sludge originating from a brewery wastewater treatment plant on the degradation of glucose was investigated at various levels of sulfate on a specific loading basis. Batch experiments were conducted in serum bottles at pH 7 and 35℃. A comparison of the values indicates that the SMA of this mixed culture was increased and reached its highest level of 0.128 g CH4 gas COD/(g VSS.d) when biomass was in contact with sulfate at a ratio of 1:0.114 by weight.  相似文献   
129.
Huangpu River is about 114.5 km from upriver Dianfeng to downriver Wusong,near the estuary of the Yangtze River.It plays a key role in supplying water for production,life,shipment and irrigation.With the industrial development,the pollution of the Huangpu River has become serious recently.The biological oxygen demand (BOD),total nitrogen (TN),total phosphorus (TP),oil,phenol and suspended solids (SS) were lower in the upstream sites than in the downstream sites,indicating pollutants being input along its course. Water quality was the worst in the Yangpu site,near the center of Shanghai City.Dissolved oxygen (DO) content was less than 2 mg/L in the site of Yangpu in July.Among relations between thirteen characteristics,relations between BOD,DO,TN,TP,NH_4~ -N, NO_3~--N and the count of total bacteria or Escherichia coli were significant and interdependent.Inner relationships between these main characteristics in the Huangpu River were studied.High nutrient concentration led to growth of microorganisms,including E.coli. Degradation of organic matters and respiration of bacteria made oxygen concentration decreased in the water body,and DO was a key factor for nitrification-denitrification process of nitrogen.In the Yangpu site,DO was decreased to less than 3.0 mg/L with BOD higher than 7.5 mg/L in May and July.Low DO concentration will decrease nitrification rate.Nitrification need at higher DO value than other organic substrate oxidation.Consequently,river water contains low NO_3~--N values with high amounts of TN and NH_4~ -N there.This will block the self-purification of surface water,by decreasing the rate of nitrification-denitrification transformation process in the water body.  相似文献   
130.
临安区域大气本底站CO_2浓度特征及其碳源汇变化研究   总被引:1,自引:1,他引:0  
通过分析2006年8月~2009年7月临安区域大气本底站Flask瓶采样获得的CO2浓度特征,结合碳追踪模式的模拟结果,研究了长三角地区碳源汇变化对CO2浓度的影响.结果表明,临安区域大气本底站的CO2浓度分布在368.3×10-6~414.8×10-6之间,具有较明显的季节波动变化特征,冬季高、夏季低,浓度年较差接近...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号