首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
长江三角洲背景地区CO2浓度变化特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过分析2009年1月~2010年12月临安区域大气本底站在线观测获得的CO2浓度,研究地面风向、地面风速、气团输送等因素对长江三角洲背景地区CO2浓度的影响.结果表明,临安站CO2浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在9.5′10-6~44.3′10-6 (V/V)之间;季节变化特征表现为冬春季高,夏季低,浓度年较差为10.1′10-6 (V/V).通过分析地面风向、地面风速和气团输送等因素对临安站CO2浓度的影响表明,引起CO2浓度升高的地面风向夏季主要为NW~NNE,冬季主要为NNE~ESE;地面风速越大,CO2浓度越小;气团远距离输送的影响主要取决于气团途径区域的CO2排放情况.  相似文献   

2.
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CO在线观测系统,于2010年9月~2012年2月在浙江省临安大气本底站对大气CO进行了在线观测.结果表明临安站四季CO日变化明显受人为活动影响,分别在每日07:00~10:00和19:00~20:00出现峰值,夏季CO日平均浓度和振幅均最低,分别为314.3×10-9±7.6×10-9(摩尔分数,下同)和50.1×10-9±47.9×10-9.该站全年大气CO浓度呈现冬春季高、夏季低的趋势,与北半球瑞士Jungfraujoch站、青海瓦里关等站基本一致,但平均浓度明显高于其他国际站点,全年CO月均值振幅约为286.8×10-9±19.2×10-9.后向轨迹聚类和地面风结果分析表明,临安站非本底CO浓度主要来自于N-NNE-ENE扇区内城市及工业等人为排放所引起.春、夏和冬季最大的浓度抬升均出现在ENE风向,冬季抬升值最大,约为106.3×10-9±58.0×10-9.  相似文献   

3.
龙凤山本底站大气CO2数据筛分及浓度特征研究   总被引:1,自引:0,他引:1  
栾天  周凌晞  方双喜  姚波  王红阳  刘钊 《环境科学》2014,35(8):2864-2870
针对黑龙江龙凤山区域大气本底站2009年1月~2011年12月低层(离地10 m)和高层(离地80 m)大气CO2在线观测数据,选取低层数据重点开展研究,分析地面风向和风速等因素对观测CO2浓度的影响.结果表明,龙凤山低层大气CO2浓度明显受局地源汇影响,其与高层观测结果差异在白天08:00~17:00相对较小,小于(0.5±0.5)×10-6(物质的量比).春、夏和秋这3个季节E-ESE-SE-SSE扇区来向的地面风会明显抬升大气CO2浓度,而冬季N-NNW-NW-WNW扇区CO2浓度明显较高.该站4个季节近地面CO2浓度随着风速增大而逐渐减小,在冬季尤为明显.结合日变化及地面风的影响,对低层观测数据进行初步本底/非本底筛分,筛选出代表东北区域混合均匀CO2水平的本底数据占总数据的30.7%.本底CO2浓度季节变化显示该站大气CO2浓度呈现冬季高夏季低的趋势,季振幅约为(36.3±1.4)×10-6,明显大于同期WMO/GAW同纬度站点观测结果,2009~2011年龙凤山大气CO2平均增长率为2.4×10-6a-1.  相似文献   

4.
我国4个WMO/GAW本底站大气CH4浓度及变化特征   总被引:6,自引:4,他引:2  
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CH4在线观测系统,于2009~2010年在青海瓦里关、浙江临安、北京上甸子和黑龙江龙凤山这4个世界气象组织全球大气观测网(WMO/GAW)大气本底站对大气CH4进行了在线观测.临安站在所有季节中CH4浓度都表现出类似的日变化趋势,即浓度在每日~05:00(北京时间)达到最高值,在~14:00为最低.夏季龙凤山站CH4浓度表现出类似的规律,但其日变化振幅较大,达到216.8×10-9(摩尔分数,下同).上甸子站春、秋、冬季CH4浓度呈现类似变化趋势,但夏季日平均值较高,在晚间~20:00达到最高值,瓦里关站四季CH4浓度日变化均不明显.3个区域本底站(临安、上甸子和龙凤山)全年CH4本底浓度存在明显的变化,临安站CH4本底浓度在7月达到全年最低水平.龙凤山站则表现出相反的趋势,在8月达到全年最高值,其全年浓度表现出"W"型变化.冬季龙凤山和上甸子站CH4浓度高于春季和秋季.瓦里关站全年浓度变化较小,月平均浓度振幅仅为11.5×10-9.临安、上甸子和龙凤山3个区域本底站夏季CH4非本底数据占总数据的比例>70%.为分析气团传输的影响,对4站夏季高浓度时刻(瓦里关:CH4>1 870×10-9,龙凤山CH4>2 100×10-9,临安CH4>2 150×10-9,上甸子CH4>2 050×10-9)对应的气团轨迹进行聚类分析表明,夏季出现的高浓度CH4观测数据可能主要由气团传输所引起.  相似文献   

5.
针对黑龙江龙凤山区域本底站2009年1月~2011年12月大气CO2在线观测数据,研究基于地面风、日变化等大气本底/非本底数据筛分方法(SWDV)和稳健局部近似回归大气本底/非本底数据筛分方法(REBS)在龙凤山区域本底站的适用性.研究表明:2种筛分方法在春、秋和冬季都能很好反映龙凤山大气CO2浓度的趋势变化及局地源汇对观测CO2浓度的影响,对于高浓度的非本底数据都能够较好的识别,但在夏季使用REBS方法会影响筛分的准确性,不建议在龙凤山区域本底站使用REBS筛分方法.SWDV和REBS法筛分出的本底数据分别占总数据量的30.7%和 58.9%.2种方法均筛分为本底浓度和非本底浓度的数据分别占总数据量的21.5%和32.0%.二者筛分的本底季平均浓度在春季相差最小为(0.1±0.3)×10-6(摩尔比,下同),冬季和秋季次之,在夏季相差最大为(4.2±1.0)×10-6.典型个例分析表明,SWDV法会将白天一些受西南污染气流影响的CO2浓度误筛分为本底浓度,REBS法会将个别在静稳天气条件下受局地影响大的CO2观测值误筛分为本底浓度.夏季局地污染状况可能被植被强烈的光合作用抵消,CO2浓度变化不大,使得REBS误筛分为本底浓度,以及对于一些较低的CO2浓度值,REBS误筛分为非本底浓度,这些因素导致2种筛分方法在夏季本底浓度差别较大.  相似文献   

6.
气象因素对长三角背景地区甲烷浓度的影响分析   总被引:3,自引:1,他引:2  
通过分析2009年1月~2011年12月临安区域大气本底站在线观测获得的CH4浓度,研究地面风向、地面风速、地面气温、日照等气象因素对长三角背景地区CH4浓度的影响.结果表明,临安站CH4浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在19.0×10-9~74.7×10-9(摩尔分数)之间;季节变化特征表现为春季低、秋季高,月均浓度分布在1 955.7×10-9~2 036.2×10-9之间.NE~SSE风向上CH4浓度较高,SW~NNW风向上CH4浓度较低;地面风速越大,CH4浓度越低;地面气温升高,CH4浓度出现先升后降的分布;随着日照时数的增加,CH4浓度亦表现为先升后降的分布特征.  相似文献   

7.
北京上甸子站气相色谱法大气CH4和CO在线观测方法研究   总被引:4,自引:2,他引:2  
参照瓦里关全球大气本底站气相色谱在线观测系统的设计,通过系统调试、测试和参数优化,于2009年在北京上甸子区域大气本底站建立了高精度气相色谱法大气CH4和CO在线观测系统.该系统对CH4和CO的测量精度分别优于0.03%和0.45%,达到世界气象组织全球大气观测计划(WMO/GAW)的质量目标.研究建立了与该系统配套的标气选取方法及运行序列:选取可基本涵盖该站大气CH4和CO浓度范围的2瓶标气作为工作标气,其中CH4浓度分别为2 007.1×10-9、1 809.5×10-9(摩尔分数,下同),CO浓度分别为405.6×10-9、123.8×10-9,在高低浓度工作标气之间穿插分析3次大气样品,能够保证测量的准确度(观测浓度的标准偏差CH4<1.7×10-9、CO<1×10-9),同时可最大程度地节省工作标气.该方法已应用于华北地区本底大气CH4和CO的高精度连续观测.  相似文献   

8.
基于江西景德镇温室气体站2017年12月~2018年11月筛分获得的CH4及CO大气本底和污染浓度数据,对大气CH4和CO浓度季节变化及其排放源特征进行研究,结果表明:大气CH4和CO本底浓度季节变化特征与浙江临安本底站类似,即夏季低而冬季高,而夏季江西地区水稻田和湿地排放导致CH4污染浓度显著抬升,相比本底浓度抬升幅度可达133.9×10-9,冬季受西北部地区取暖排放的区域输送的影响,1月CO污染平均浓度较本底浓度抬升达227.2×10-9.基于本底数据及污染数据,结合后向轨迹模型分析发现景德镇站大气CO潜在排放源主要分布在湖北东南部(四季)、安徽(秋冬季)、山东中部(秋季)、长江三角洲上海及杭州(夏秋季)、湖南东部和江西地区(冬季)等区域,其中冬季湖南东部和江西地区贡献率达53.7%,CH4排放源主要集中在江西地区(夏季)、长江三角洲杭州、南京及安徽南部覆盖区域(夏季)、湖北东南部(夏秋季)以及安徽(秋季)、山东中部(秋季)等区域,夏季南京、杭州及安徽南部覆盖区域的CH4排放对景德镇站CH4浓度抬升的贡献率达到69.5%.大气CH4及CO呈现较好的相关性,冬季其相关系数可达0.86,受CH4和CO源汇季节变化影响,CH4/CO排放比呈现冬季低值(0.31)、夏季高值(1.06).  相似文献   

9.
夏玲君  周凌晞  刘立新  张根 《环境科学》2016,37(4):1248-1255
基于北京上甸子站(SDZ)2007~2013年大气CO_2及2009~2013年大气δ13C(CO_2)瓶采样观测资料,筛分获得混合均匀且未受局地污染影响、具代表性的大气CO_2及δ13C(CO_2)本底数据.2007~2013年SDZ站大气CO_2年均本底浓度变化范围为385.6×10-6~398.1×10-6,年均增长率为2.0×10-6a-1;2009~2013年其大气δ13C(CO_2)年均本底值变化范围为-8.38‰~-8.52‰,年均增长率为-0.03‰·a-1.SDZ站2007~2013年的7~9月月均浓度最低水平均出现在2008年,且2007~2008年增长率仅为0.3×10-6a-1,推测主要源于2008年奥运期间北京及其周边省市节能减排措施实施导致碳排放量减少.SDZ站大气CO_2本底浓度季节变化最低值出现在8月,最高值出现在3月,季节振幅达到23.9×10-6;大气δ13C(CO_2)与CO_2季节变化特征大致呈镜像关系,其季节振幅为1.03‰.对SDZ站CO_2源汇的碳同位素"signature"(δs)研究表明,供暖季Ⅰ(01-01~03-14)和Ⅱ(11-15~12-31)的δs分别为-21.30‰和-25.39‰,推测主要源自化石燃料与生物质燃烧的影响;其植物生长季的δbio值为-21.28‰,推测主要来自植被活动的贡献.  相似文献   

10.
光腔衰荡光谱(CRDS)法观测我国4个本底站大气CO2   总被引:11,自引:2,他引:9  
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CO2在线观测系统,于2009年在青海瓦里关、浙江临安、北京上甸子和黑龙江龙风山4个世界气象组织全球大气观测网(WMO/GAW)大气本底站对大气CO2进行了在线观测.初步分析结果表明,4站全年大气CO2体积分数最低值出现在7~8月,夏季临安、龙风山和上甸子站CO2平均体积...  相似文献   

11.
张芳  周凌晞  王玉诏 《环境科学》2015,36(7):2405-2413
从大气二氧化碳(CO2)浓度观测资料中准确提取源汇或本底信息对区域及全球碳源汇及大气CO2浓度长期变化趋势的定量估计至关重要.本研究以瓦里关大气CO2浓度观测资料为例,探讨了同期地面风和同期一氧化碳(CO)浓度观测资料作为源汇信息提取或本底值筛选因子的有效性.结果表明,地面风和同期CO浓度在冬季可作为筛选因子,但是夏季将其作为筛选因子不是十分有效.采用局部近似回归法(robust estimation of background signal,REBS)、傅里叶变换法(Fourier transform algorithm,FTA)和新发展的平均移动过滤法(moving average filtering,MAF)进行大气CO2浓度源汇及本底信息提取.结果表明,MAF法因其以每2周为一个拟合窗口,采用不断变化和调整的过滤标准,避免了在局部将抬升浓度或吸收浓度百分比过高或者过低估计,优于另外两种方法.3种方法对因区域排放源导致的大气CO2的抬升量的结果无显著差异,但对因区域吸收汇导致的大气CO2降低量差异明显.结果表明,3种方法均可以对受到人类活动排放源影响的CO2抬升浓度合理地筛分,但只有MAF法可对夏季吸收浓度较好地判别.MAF法获得的1995~2008年瓦里关大气CO2多年平均季振幅为约10.3×10-6(摩尔分数,下同),与前期观测结果一致;而REBS法得到的大气CO2逐年季振幅约为9.1×10-6,将会导致低估区域或全球CO2通量值.  相似文献   

12.
Burning animal wastes for the production of electricity is stimulated in the European Union because of the ‘climate neutrality’ of its life cycle. In doing so fossil fuel inputs in animal husbandry and the N2O and CH4 emissions associated with animal husbandry are neglected. Here types of relatively fossil fuel efficient animal husbandry in the European Union are analysed without neglecting such inputs and emissions. The burning of pig derived animal meal, a single-output process, was found to be associated with an emission of greenhouse gases equivalent to 33 × 102–44 × 102 g CO2/kilowatt-hour (kWh). In most cases, however, animal wastes can be viewed as outputs from a multi-output production process. If system expansion is not possible, one may allocate multi-output process emissions on the basis of financial value or on a physical basis. Allocating on the basis of energy content of outputs of animal husbandry the burning of manure from poultry, dairy cows and pigs was estimated to generate between 6.3 × 102 and 19.5 × 102 g CO2 equivalent per kWh. When allocating on the basis of financial value, burning manure in the Netherlands corresponds with net-sequestration, as the monetary value of manure is negative. For chicken manure a net sequestration was found of 2.5 × 102–3.9 × 102 g CO2 equivalent/kWh. Thus life cycle emissions of burning animal waste are extremely sensitive to the allocation principle favoured. One may extend the life cycle for instance by including indirect effects such as the substitution of carbon that is lost to agriculture due to burning animal wastes. Such an extension may well lead to a changed emission in terms of CO2 equivalent emitted per kWh.  相似文献   

13.
大气CO2中放射性碳同位素(14C)的水平可以反映化石源CO2的影响程度,这对于评估我国目前化石源CO2的排放状况和制定节能减排政策具有重要的指导意义。本文在概述大气14CO2采样和分析方法的基础上,简要介绍了大气14CO2观测的起源和主要的源汇过程,重点论述了大气14CO2的时空分异特征及其驱动因素;阐述了化石源CO2浓度的估算方法及14CO2在国内外化石源CO2示踪中的应用现状,并对大气14CO2观测在我国化石源CO2示踪中的应用前景进行了展望;旨在为我国正确地开展大气14CO2的观测研究,深刻地理解特定区域大气14CO2的时空分异特征和化石源CO2的分布状况提供参考。  相似文献   

14.
21世纪源排放与大气CO2体积分数预测   总被引:6,自引:1,他引:5  
简要介绍了IPCC在2000年3月正式公布的21世纪温室气体排放方案,利用一维全球碳循环模式及7种代表性方案对21世纪的大气CO2体积分数进行预测.研究发现:21世纪,大气CO2体积分数增长速率将高于20世纪,化石燃料源仍然是引起大气CO2体积分数增长的主要原因;如果化石燃料仍为主要能源且它的碳排放量逐年增加,大气的碳吸收比例将不断升高,21世纪末大气CO2体积分数可能超过1 000×10-6;只有积极开发新能源,使化石燃料源源强逐年减小,才有可能使大气的碳吸收比例下降,若进一步改善土地利用状况,21世纪末大气CO2体积分数有望出现下降趋势.   相似文献   

15.
浦静姣  徐宏辉  姚波  张超  单萌 《中国环境科学》2022,42(10):4494-4500
采用位于长三角地区的临安区域大气本底站罐采样获得的全氟温室气体(PFCs、SF6、NF3、SO2F2)浓度,分析2011~2020年该地区大气中全氟温室气体的浓度分布特征和变化趋势.结果显示,临安站绝大部分全氟温室气体的浓度均呈现逐年升高的变化趋势,至2020年长三角地区全氟温室气体本底浓度分别达到(86.30±0.52)×10-12(CF4)、(5.03±0.00)×10-12(C2F6)、(0.70±0.01)×10-12(C3F8)、(1.82±0.00)×10-12(c-C4F8)、(10.44±0.01)×10-12(SF6)、(2.36±0.04)×10-12(NF3)、(2.61±0.05)×10-12(SO2F2).长三角地区大部分全氟温室气体的本底浓度与全球本底值接近.通过对临安站全氟温室气体污染浓度的潜在源贡献作用(PSCF)和浓度权重轨迹(CWT)分析显示,临安站全氟化碳PFCs (CF4、C4F10、C2F6、C3F8、c-C4F8)的潜在源区主要包括山东、江苏、安徽、上海、浙江中北部和江西东北部地区,NF3、SF6、SO2F2的潜在源区则集中在江苏中南部、上海、浙北地区.  相似文献   

16.
本研究于2019年12月至2020年1月在5个区域大气本底站:临安、金沙、龙凤山、上甸子和瓦里关,同步采集了PM2.5样品,分析了其中的非极性有机物:多环芳烃、正构烷烃和藿烷类化合物。结果表明,上甸子和龙凤山的多环芳烃平均浓度显著高于其他站点,分别为35.2±25.6 ng/m3和27.5±16.8 ng/m3;藿烷类物质的浓度在上甸子和临安出现高值,分别为2.72±1.78 ng/m3和2.47±0.990 ng/m3;正构烷烃浓度以临安最高,为86.7±40.6 ng/m3。对各站点多环芳烃和藿烷类化合物采用比值法,正构烷烃采用主峰碳数(Cmax)、碳优势指数(carbon preference index,CPI)和植物蜡贡献率(% Wax Cn),结合主成分分析-多元线性回归模型(PCA/MLR)综合进行源解析。结果显示采样期间除瓦里关外,其余站点燃烧源均以化石燃料源为主,贡献率分别为临安(94.9%) > 金沙(75.3%) > 龙凤山(74.7%) > 上甸子(62.5%) > 瓦里关(35.6%)。后向轨迹聚类分析(HYSPLIT)和潜在源贡献因子分析法(PSCF)表明各站点主要受到外来传输气团的影响,并查明了各站点的潜在污染源区。对背景站点的研究表明,东北地区和京津冀地区PM2.5中非极性有机物来源相似,京津冀地区的生物质燃烧源贡献率高于东北地区;长江中下游地区化石燃料贡献率显著高于生物质燃烧;华中地区燃煤和交通排放源排放贡献率均低于长江三角洲地区;青藏高原地区生物质燃烧贡献率远高于其他地区。  相似文献   

17.
通过分析2018年12月—2019年11月江西赣州站大气CO2和CH4浓度高精度在线观测资料,对其CO2和CH4浓度变化特征进行了研究,分析了区域大气输送的影响以及潜在排放源区分布特征.结果表明:研究期内赣州站CO2和CH4的平均浓度分别为433.1×10-6和2142.5×10-9.赣州站CO2和CH4浓度日变化均表现为日间低、早晚高,CO2浓度日振幅在夏季最大,为29.7×10-6,冬季最小,为6.9×10-6.CH4浓度日振幅在秋季最大,为145.1×10-9,冬季最小,为41.4×10-9.CO2本底浓度季节变化表现为4—8月迅速下降,8—11月逐渐上升,最大值出现在1月,最小值出现在8月,季节振幅为26.2×10-6.CH4本底浓度季节变化表现为1—7月逐渐下降,7—9月逐渐上升,最大值出现在1月,最小值出现在7月,季节振幅为79.5×10-9,基本可代表江西赣州地区混合均匀大气的CO2和CH4季节变化状况.与南昌站对比分析表明,赣州站各季节CO2和CH4本底浓度均低于南昌站.赣州地区CO2和CH4潜在源区主要分布在江西北部、湖北东部、安徽南部和珠江三角洲地区.  相似文献   

18.
Carbon dioxide release due to change in land usein China mainland   总被引:4,自引:0,他引:4  
CarbondioxidereleaseduetochangeinlanduseinChinamainlandWangXiaoke;ZhuangYahui;FengZongwei(ResearchCenterforEco-EnvironmentalS...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号