首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   59篇
  国内免费   129篇
安全科学   54篇
废物处理   16篇
环保管理   52篇
综合类   252篇
基础理论   14篇
污染及防治   39篇
评价与监测   11篇
社会与环境   16篇
灾害及防治   2篇
  2024年   3篇
  2023年   5篇
  2022年   11篇
  2021年   16篇
  2020年   20篇
  2019年   23篇
  2018年   27篇
  2017年   24篇
  2016年   33篇
  2015年   20篇
  2014年   24篇
  2013年   24篇
  2012年   32篇
  2011年   16篇
  2010年   11篇
  2009年   18篇
  2008年   12篇
  2007年   21篇
  2006年   13篇
  2005年   13篇
  2004年   18篇
  2003年   12篇
  2002年   12篇
  2001年   15篇
  2000年   12篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有456条查询结果,搜索用时 31 毫秒
421.
基于GIS的灾害应急管理系统业务数据和空间数据的集成   总被引:1,自引:0,他引:1  
常用的关系数据库缺乏直接管理空间数据的成熟的通用方案。借助于空间数据库引擎(SDE)技术,扩展了关系数据库功能,使关系数据库成为业务数据和空间数据的统一存储管理平台,并在此基础上建立了基于Geodatabase模型的灾害应急管理系统数据库,对系统数据整体结构进行研究设计,解决了空间数据和业务数据的关联问题,实现了灾害应急管理系统空间数据和业务数据的无缝集成和一体化存储。该方法已在省级应急管理信息示范平台上成功应用。  相似文献   
422.
机动车遥感监测(以下简称遥测)具有快速和便捷特点,可减轻人工执法工作量,为机动车污染排放监管和执法提供良好的支持.本研究对北京市2021年1—4月60个道路机动车遥测站点污染排放数据进行统计分析,获取了北京市汽油车大气污染物排放浓度(均为体积浓度)累积分布概率等排放特征.通过数据比对和典型现场实验,对车辆在稳态工况法(ASM)和遥测大气污染物排放数据进行相关性分析,并提出了北京市地方标准修订的建议.研究结果表明:①将监测到的1149.7万条数据按污染物浓度由高到低的顺序排列,累积分布概率前10%、50%和90%的CO浓度分别为1.73%、0.58%和0.16%;HC分别为96.38×10-6、22.44×10-6和6.59×10-6 ;NO则为686.58×10-6、117.70×10-6和24.13×10-6.②排放水平与排放标准有较大的关系,其中国VI排放标准车辆污染物浓度水平显著低于国I车辆,累积分布概率前10%、50%和90%对应的CO浓度下降率为54.83%~85.71%,HC下降率为75.71%~85.35%,NO则为65.73%~85.00%.③与稳态工况法相关性分析表明,在样本量较大的情况下,两种方法检出的排放水平趋于一致,但对于单个车辆来讲,具有一定的波动性.④现执行的北京市地方标准污染物种类不全,限值较为宽松,建议充分利用现有的遥测设备资源,将HC和NO纳入标准限值,筛查高排放车辆,提高机动车排放监管和执法效率.  相似文献   
423.
采用喷雾热分解法制备了钙钛矿型催化剂La0.7Sr0.3Mn1-xCoxO3-δ(x=0、0.3、0.5、0.7),利用X射线衍射(XRD)和扫描电子显微镜(SEM)对催化剂进行了表征,在微型固定床反应器上优化了催化剂的B位掺杂Co.在天然气发动机排放试验台架上进行了空燃比特性、CH4排放和发动机尾气排放达标等测试试验.结果表明:在La0.7Sr0.3Mn1-x Co x O3-δ中掺杂适宜量的Co有助于提高催化剂的催化燃烧活性,改善催化剂比表面积和孔容积.当Co掺杂量为0.5时,所形成的La0.7Sr0.3Mn0.5Co0.5O3-δ催化剂对天然气发动机尾气排放物呈现出良好低温催化燃烧活性,对甲烷催化燃烧的起燃温度(T10)、半转化温度(T50)和完全转化温度(T90)分别为175、350和400℃,CO、NO x、非甲烷碳氢化合物(NMHC)和CH4的最大比排放量分别为3.01、1.72、0.31和0.85 g·kW-1·h-1,达到了国Ⅴ排放法规对天然气发动机有害排放物的限值要求,表明了La0.7Sr0.3Mn0.5Co0.5O3-δ适宜用于天然气发动机尾气低温催化燃烧的催化剂.  相似文献   
424.
The sorption and phase distribution of 20% ethanol and butanol blended gasoline (E20 and B20) vapours have been examined in soils with varying soil organic matter (SOM) and water contents via laboratory microcosm experiments. The presence of 20% alcohol reduced the sorption of gasoline compounds by soil as well as the mass distribution of the compounds to soil solids. This effect was greater for ethanol than butanol. Compared with the sorption coefficient (Kd) of unblended gasoline compounds, the Kd of E20 gasoline compounds decreased by 54% for pentane, 54% for methylcyclopentane (MCP) and 63% for benzene, while the Kd of B20 gasoline compounds decreased by 39% for pentane, 38% for MCP and 49% for benzene, The retardation factor (R) of E20 gasoline compounds decreased by 53% for pentane, 53% for MCP and 48% for benzene, while the R of B20 gasoline compounds decreased by 39% for pentane, 37% for MCP and 38% for benzene. For all SOM and water contents tested, the Kd and R of all gasoline compounds were in the order of unblended gasoline 〉 B20 〉 E20, indicating that the use of high ethanol volume in gasoline to combat climate change could put the groundwater at greater risk of contamination,  相似文献   
425.
周杰 《化工环保》2016,36(2):221-225
合成了3种N-甲基吡咯烷酮离子液体([HNMP]FeCl4,[HNMP]CuCl2,[HNMP]ZnCl3),并将其用于模拟汽油(噻吩溶于正辛烷,硫含量1381μg/g)中噻吩的萃取脱除。考察了[HNMP]FeCl4的深度脱硫和重复使用性能。实验结果表明:30℃下3种离子液体脱硫能力的强弱顺序为[HNMP]FeCl4[HNMP]CuCl2[HNMP]ZnCl3;在[HNMP]FeCl4与模拟汽油的体积比为1∶1、FeCl3与[HNMP]Cl的摩尔比为1、萃取时间为60min的优化条件下,单程脱硫率为70.7%,经4级萃取后模拟汽油中的硫含量降至61μg/g、总脱硫率为95.6%;利用真空加热法对[HNMP]FeCl4进行再生,[HNMP]FeCl4使用5次后脱硫率从70.7%降至59.5%,仍保持较好的脱硫性能。  相似文献   
426.
氧化催化转化器对甲醇压燃尾气中甲醛排放的影响   总被引:1,自引:1,他引:0  
在一台经过改装的压燃式发动机上,采用柴油/甲醇组合燃烧(DMCC)模式进行了台架实验,利用气相色谱分析技术检测了1800r·min<'-1时发动机尾气中甲醛的排放特性,对比研究了负荷、甲醇掺烧比、排气温度.催化转化器对甲醛排放的影响.研究结果表明,在压燃式发动机上采用DMCC模式,低负荷运行时,尾气中甲醛含量随甲醇掺烧比的增加而增多,在甲醇掺烧比为46%时.甲醛排放量达到180 x 10<'-6(体积分数),催化后可以减少25%~45%;在中,高负荷运行时.甲醛排放量随甲醇掺烧比的变化基本不变,高负荷比中负荷运行时甲醛排放稍高.但尾气经催化处理后,甲醛排放反而增加,最高增加1倍.催化转化器的转化效果与排气温度密切相关,当排气温度在大约300°C以下时,催化转化器可以降低甲醛排放量;当温度为300°C~410°C时,催化后尾气中的甲醛排放较催化前有所增加;当排气温度高于425°C时.催化后尾气中甲醛排放显著减少.  相似文献   
427.
为提高甲醇/柴油双燃料发动机的安全性和可靠性,基于ISO 26262功能安全标准,定义甲醇/柴油喷射控制系统相关项,分析系统结构和功能;参照DFMEA分析方法,构造出相关项失效模型,得到系统功能失效导致的整车级危害;分析在最坏潜在事故场景下,危害事件的严重度、暴露率、可控性等级,得到汽车安全完整性等级,确立安全目标;提出系统功能安全要求,根据分解规则,将功能安全要求分配到系统各要素当中去,确立安全机制;在Isograph软件中搭建FTA故障树模型,评估系统硬件随机失效指标与安全目标一致性,验证功能安全概念。结果表明:利用功能安全概念更新系统架构,评估各个要素失效率和安全机制诊断覆盖率后,系统随机硬件失效指标为9.405E-09/h,符合ASILD等级安全要求。  相似文献   
428.
• Emissions from 53 in-use diesel-fueled off-road equipment were measured. • There exists a large off-road equipment variability in emissions. • Engine operations have significant impacts on real-world tailpipe emissions. • Emission inventory development should take into account job duties and operations. The objective of this paper is to quantify the variability in emissions of off-road equipment using a portable emission measurement system. A total of 53 commonly used equipment for agriculture, base construction, paving construction, and material handling were selected. Time-based and fuel-based emissions were quantified by different duty and engine modes. Three duty modes (idling, moving, and working) were used. Ten engine modes were defined based on normalized engine revolutions-per-minute and manifold absolute pressure, respectively. Composite emission factors taking into account both duty modes and its corresponding time percentage during a typical duty cycle were estimated. Results showed that there existed a large off-road equipment variability in emissions. Depending on duty and engine modes, time-based NO emissions ranged from 3.1 to 237.9, 29.1‒1475.6, 83.2‒681.6, and 3.2‒385.2 g/h for agriculture, base construction, paving construction and material handling equipment, respectively while for fuel-based NO emissions these ranges were 5.3‒52.0, 11.7‒69.0, 4.8‒30.8, and 11.0‒54.6 g/kg, respectively. Furthermore, emission factors derived from this study exhibited a much larger variability compared to those used in NONROAD by US EPA and National Guideline for Off-road Equipment of China. This implied that localized measurements of emissions are needed for improvement of accuracy of emission inventory. Furthermore, both equipment types and operations should be considered for development of emission inventory and control strategy.  相似文献   
429.
Background Aims, and Scope. Lead (Pb) is a naturally occurring element that poses environmental hazards when present at elevated concentration. It is being released into the environment because of industrial uses and from the combustion of fossil fuels. Hence, Pb is ubiquitous throughout global ecosystems. The existence of potentially harmful concentrations of Pb in the environment must be given full attention. Emissions from vehicles are major source of environmental contamination by Pb. Thus, it becomes imperative that concentrations of Pb and other hazardous materials in the environment not only in the Philippines, but elsewhere in the world be adequately examined in order that development of regulations and standards to minimize risk associated with these materials in urban areas is continued. The objectives of this study were: (1) to determine the levels of Pb in soil from selected urbanized cities in central region of the Philippines; (2) to identify areas with soil Pb concentration values that exceed estimated natural concentrations and allowable limits; and (3) to determine the possible sources that contribute to elevated soil Pb concentration (if any) in the study area. Methods This study was limited to the determination of Pb levels in soils of selected urbanized cities located in central region in the Philippines, namely: Site 1 – Tarlac City in Tarlac; Site 2 – Cabanatuan City in Nueva Ecija; Site 3 – Malolos City in Bulacan; Site 4 – San Fernando City in Pampanga; Site 5 – Balanga City in Bataan; and Site 6 – Olongapo City in Zambales. Soil samples were collected from areas along major thoroughfares regularly traversed by tricycles, passenger jeepneys, cars, vans, trucks, buses, and other motor vehicles. Soil samples were collected from five sampling sites in each of the study areas. Samples from the selected sampling sites were obtained approximately 2 to 3 meters from the road. Analysis of the soil samples for Pb content was conducted using an atomic absorption spectrophotometer. This study was conducted from 2003 to 2004. Since this study assumed that vehicular emission is the major source of Pb contamination in urban soil, other information which the researchers deemed to have bearing on the study were obtained such as relative quantity of each gasoline type disposed of in each city within a given period and volume of traffic in each sampling site. A survey questionnaire for gasoline station managers was prepared to determine the relative quantity of each fuel type (diesel, regular gasoline, premium gasoline, and unleaded gasoline) disposed of or sold within a given period in each study area. Results and Discussion Analysis of soil samples for Pb content showed the presence of Pb in all the soil samples collected from the 30 sampling sites in the six cities at varying concentrations ranging from 1.5 to 251 mg kg–1. Elevated levels of Pb in soil (i.e. greater than 25 mg kg–1 Pb) were detected in five out of the six cities investigated. Site 4 recorded the highest Pb concentration (73.9 ± 94.4 mg kg–1), followed by Site 6 (56.3 ± 17.1 mg kg–1), Site 3 (52.0 ± 33.1 mg kg–1), Site 5 (39.3 ± 19.0 mg kg–1), and Site 2 (38.4 ± 33.2 mg kg–1). Soil Pb concentration in Site 1 (16.8 ± 12.2 mg kg–1) was found to be within the estimated natural concentration range of 5 to 25 mg kg–1. Site 1 registered the least Pb concentration. Nonetheless, the average Pb concentration in the soil samples from the six cities studied were all found to be below the maximum tolerable limit according to World Health Organization (WHO) standards. The high Pb concentration in Site 4 may be attributed mainly to vehicular emission. Although Site 4 only ranked 3rd in total volume of vehicles, it has the greatest number of Type B and Type C vehicles combined. Included in these categories are diesel trucks, buses, and jeepneys which are considered the largest contributors of TSP (total suspended particles) and PM10 (particulate matter less than 10 microns) emissions. Conclusion Only one (San Juan in Site 4) of the thirty sampling sites recorded a Pb concentration beyond the WHO permissible limit of 100 mg kg–1. San Juan in Site 4 had a Pb concentration of >250 mg kg–1. On the average, elevated Pb concentration was evident in the soil samples from San Fernando, Olongapo, Malolos, Balanga, and Cabanatuan. The average soil Pb concentrations in these cities exceeded the maximum estimated natural soil Pb concentration of 25 mg kg–1. Average soil Pb concentration in Site 1 (16.8 mg kg–1) was well within the estimated natural concentration range of 5 to 25 mg kg–1. Data gathered from the study areas showed that elevated levels of Pb in soil were due primarily to vehicular emissions and partly to igneous activity. Recommendation and Outlook The findings of this study presented a preliminary survey on the extent of Pb contamination of soils in urban cities in central region of Philippines Island. With this kind of information on hand, government should develop a comprehensive environmental management strategy to address vehicular air pollution in urban areas, which shows as one of the most pressing environmental problems in the country. Basic to this is the continuous monitoring of Pb levels and other pollutants in air, soil, and water. Further studies should be conducted to monitor soil Pb levels in the six cities studied particularly in areas with elevated Pb concentration. The potential for harm from Pb exposure cannot be understated. Of particular concern are children who are more predisposed to Pb toxicity than adults. Phytoremediation of Pb-contaminated sites is strongly recommended to reduce Pb concentration in soil. Several studies have confirmed that plants are capable of absorbing extra Pb from soil and that some plants, grass species in particular, and can naturally absorb far more Pb than others.  相似文献   
430.
The use of the oxygenate methyl tert-butyl ether (MTBE) in gasoline has led to detectable concentrations in urban and rural air up to 160 ppbV. Results from MTBE measurement in precipitation have not been reported so far. In the present study, 120 samples of precipitation collected at 17 sampling locations all over Germany have been analyzed for their MTBE content. Analysis is performed by a combination of headspace-solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC-MS). A 75 μm poly(dimethylsiloxane)/Carboxene fiber and a cryostat is used for SPME. The detection limit is 10 ng/l. In precipitation samples, MTBE was detected in wintertimes only with a maximum concentration of 85 ng/l. Measurement at Frankfurt/M City from 6 September 2000 to 12 March 2001 provided for 49% of the data concentrations in the range of 30–85 ng/l (n=17). Sampling in winter 2000/2001 at several German cities and rural locations showed that MTBE is more often detectable in urban (86%, n=78) than in rural (18%, n=42) precipitation. By comparing the results with corresponding temperatures and amounts of precipitation it can be concluded that the detection of MTBE in urban precipitation is observed at ambient temperatures lower than about 10–15°C. Moreover, the first precipitation after a dry period accumulates more MTBE than precipitation during or at the end of a wet period (wash-out effect). Highest concentrations occurred in snow samples. Corresponding mean air equilibrium concentrations of 0.04 ppbV (urban samples) and 0.01 ppbV (rural samples) are calculated. This is about one magnitude lower than year round and summertime measurements in the US and in Switzerland. Urban runoff (n=12) and corresponding precipitation sampling indicate that urban runoff might be composed of about 20% MTBE that is already transported by air and precipitation, whereas about 80% may be attributed to direct uptake of vehicle emissions and leakage near the road during precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号