首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   15篇
基础理论   62篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   7篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2003年   1篇
排序方式: 共有62条查询结果,搜索用时 703 毫秒
31.
Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species’ phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded.  相似文献   
32.
To contribute to the aspirations of recent international biodiversity conventions, protected areas (PAs) must be strategically located and not simply established on economically marginal lands as they have in the past. With refined international commitments under the Convention on Biological Diversity to target protected areas in places of “importance to biodiversity,” perhaps they may now be. We analyzed location biases in PAs globally over historic (pre‐2004) and recent periods. Specifically, we examined whether the location of protected areas are more closely associated with high concentrations of threatened vertebrate species or with areas of low agricultural opportunity costs. We found that both old and new protected areas did not target places with high concentrations of threatened vertebrate species. Instead, they appeared to be established in locations that minimize conflict with agriculturally suitable lands. This entrenchment of past trends has substantial implications for the contributions these protected areas are making to international commitments to conserve biodiversity. If protected‐area growth from 2004 to 2014 had strategically targeted unrepresented threatened vertebrates, >30 times more species (3086 or 2553 potential vs. 85 actual new species represented) would have been protected for the same area or the same cost as the actual expansion. With the land available for conservation declining, nations must urgently focus new protection on places that provide for the conservation outcomes outlined in international treaties.  相似文献   
33.
The key to the conservation of harvested species is the maintenance of reproductive success. Yet for many marine species large, old, individuals are targeted despite their disproportionate contribution to reproduction. We hypothesized that a combination of no-take marine protected areas (MPAs) and harvest slot limits (maximum and minimum size limits) would result in the conservation of large spawning individuals under heavy harvest. We tested this approach under different harvest intensities with a 2-sex, stage-structured metapopulation model for the Caribbean spiny lobster (Panulirus argus). P. argus is intensively harvested in the Caribbean, and in many localities large, mature individuals no longer exist. No-take MPAs and harvest slot limits combined, rebuilt and maintained large mature individuals even under high harvest pressure. The most conservative model (a 30% MPA and harvest slot limit of 75–105 mm) increased spawner abundance by 5.53E12 compared with the fishing status quo at the end of 30 years. Spawning stock abundance also increased by 2.76–9.56E12 individuals at a high harvest intensity over 30 years with MPAs alone. Our results demonstrate the potential of MPAs and harvest slot limits for the conservation of large breeding individuals in some marine and freshwater environments. Decisions on which management strategy best suits a fishery, however, requires balancing what is ecologically desirable with what is economically and socially feasible.  相似文献   
34.
Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood‐dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark‐recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long‐distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long‐distance dispersal. Particularly for fungi, more studies at management‐relevant scales (1–10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species‐specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management‐relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long‐distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high‐quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.  相似文献   
35.
Indigenous Peoples’ lands cover over one-quarter of Earth's surface, a significant proportion of which is still free from industrial-level human impacts. As a result, Indigenous Peoples and their lands are crucial for the long-term persistence of Earth's biodiversity and ecosystem services. Yet, information on species composition on these lands globally remains largely unknown. We conducted the first comprehensive analysis of terrestrial mammal composition across mapped Indigenous lands based on data on area of habitat (AOH) for 4460 mammal species assessed by the International Union for Conservation of Nature. We overlaid each species’ AOH on a current map of Indigenous lands and found that 2695 species (60% of assessed mammals) had ≥10% of their ranges on Indigenous Peoples’ lands and 1009 species (23%) had >50% of their ranges on these lands. For threatened species, 473 (47%) occurred on Indigenous lands with 26% having >50% of their habitat on these lands. We also found that 935 mammal species (131 categorized as threatened) had ≥ 10% of their range on Indigenous Peoples’ lands that had low human pressure. Our results show how important Indigenous Peoples’ lands are to the successful implementation of conservation and sustainable development agendas worldwide.  相似文献   
36.
Mapping and predicting the potential risk of fishing activities to large marine protected areas (MPAs), where management capacity is low but fish biomass may be globally important, is vital to prioritizing enforcement and maximizing conservation benefits. Drifting fish aggregating devices (dFADs) are a highly effective fishing method employed in purse seine fisheries that attract and accumulate biomass fish, making fish easier to catch. However, dFADs are associated with several negative impacts, including high bycatch rates and lost or abandoned dFADs becoming beached on sensitive coastal areas (e.g., coral reefs). Using Lagrangian particle modeling, we determined the potential transit of dFADs in a large MPA around the Chagos Archipelago in the central Indian Ocean. We then quantified the risk of dFADs beaching on the archipelago's reefs and atolls and determined the potential for dFADs to pass through the MPA, accumulate biomass while within, and export it into areas where it can be legally fished (i.e., transit). Over one-third (37.51%) of dFADs posed a risk of either beaching or transiting the MPA for >14 days, 17.70% posed a risk of beaching or transiting the MPA for >30 days, and 13.11% posed a risk of beaching or transiting the MPA for >40 days. Modeled dFADs deployed on the east and west of the perimeter were more likely to beach and have long transiting times (i.e., posed the highest risk). The Great Chagos Bank, the largest atoll in the archipelago, was the most likely site to be affected by dFADs beaching. Overall, understanding the interactions between static MPAs and drifting fishing gears is vital to developing suitable management plans to support enforcement of MPA boundaries and the functioning and sustainability of their associated biomass.  相似文献   
37.
Nature reserves (NR) are the cornerstone of biodiversity conservation. Over the past 60 years, the rapid expansion of NRs in China, one of the world's megadiverse countries, has played a critical role in slowing biodiversity loss. We examined the changes in the number and area of China's NRs from 1956 to 2014 and analyzed the effect of economic development on the expansion of China's NRs from 2005 to 2014 with linear models. Despite a continuing increase in the number of NRs, the total area of China's NRs decreased by 3% from 2007 to 2014. This loss resulted from downsizing and degazettement of existing NRs and a slowdown in the establishment of new ones. Nature reserves in regions with rapid economic development exhibited a greater decrease in area, suggesting that downsizing and degazettement of NRs are closely related to the intensifying competition between economic growth and conservation. For example, boundary adjustments to national NRs, the most strictly protected NRs, along the coast of China's Yellow Sea, a global biodiversity hotspot with a fast-growing economy, resulted in the loss of one-third of the total area. One of the most important ecosystems in these NRs, tidal wetlands, decreased by 27.8% because of boundary adjustments and by 25.2% because of land reclamation. Our results suggest conservation achievement, in terms of both area and quality, are declining at least in some regions in the Chinese NR estate. Although the designation of protected areas that are primarily managed for sustainable use has increased rapidly in recent years in China, we propose that NRs with biodiversity conservation as their main function should not be replaced or weakened.  相似文献   
38.
The ability of private conservation organizations to remain financially viable is a key factor influencing their effectiveness. One‐third of financially motivated private‐land conservation areas (PLCAs) surveyed in South Africa are unprofitable, raising questions about landowners’ abilities to effectively adapt their business models to the socioeconomic environment. In any complex system, options for later adaptation can be constrained by starting conditions (path dependence). We tested 3 hypothesized drivers of path dependence in PLCA ecotourism and hunting business models: (H1) the initial size of a PLCA limits the number of mammalian game and thereby predators that can be sustained; (H2) initial investments in infrastructure limit the ability to introduce predators; and (H3) rainfall limits game and predator abundance. We further assessed how managing for financial stability (optimized game stocking) or ecological sustainability (allowing game to fluctuate with environmental conditions) influenced the ability to overcome path dependence. A mechanistic PLCA model based on simple ecological and financial rules was run for different initial conditions and management strategies, simulating landowner options for adapting their business model annually. Despite attempts by simulated landowners to increase profits, adopted business models after 13 years were differentiated by initial land and infrastructural assets, supporting H1 and H2. A conservation organization's initial assets can cause it to become locked into a financially vulnerable business model. In our 50‐year simulation, path dependence was overcome by fewer of the landowners who facilitated natural ecological variability than those who maintained constant hunting rates and predator numbers, but the latter experienced unsustainably high game densities in low rainfall years. Management for natural variability supported long‐term ecological sustainability but not shorter term socioeconomic sustainability for PLCAs. Our findings highlight trade‐offs between ecological and economic sustainability and suggest a role for governmental support of the private conservation industry.  相似文献   
39.
Effective conservation of biological diversity on private lands will require changes in land‐use policy and development practice. Conservation development (CD) is an alternative form of residential development in which homes are built on smaller lots and clustered together and the remainder of the property is permanently protected for conservation purposes. We assessed the degree to which CD is permitted and encouraged by local land‐use regulations in 414 counties in the western United States. Thirty‐two percent of local planning jurisdictions have adopted CD ordinances, mostly within the past 10 years. CD ordinances were adopted in counties with human population densities that were 3.0 times greater and in counties with 2.5 times more land use at urban, suburban, and exurban densities than counties without CD ordinances. Despite strong economic incentives for CD (e.g., density bonuses, which allow for a mean of 66% more homes to be built per subdivision area), several issues may limit the effectiveness of CD for biological diversity conservation. Although most CD ordinances required a greater proportion of the site area be protected than in a typical residential development, just 13% (n = 17) of the ordinances required an ecological site analysis to identify and map features that should be protected. Few CD ordinances provided guidelines regarding the design and configuration of the protected lands, including specifying a minimum size for protected land parcels or encouraging contiguity with other protected lands within or near to the site. Eight percent (n =11) of CD ordinances encouraged consultation with a biological expert or compliance with a conservation plan. We recommend that conservation scientists help to improve the effectiveness of CD by educating planning staff and government officials regarding biological diversity conservation, volunteering for their local planning boards, or consulting on development reviews. Guías e Incentivos para el Desarrollo de la Conservación en Regulaciones de Uso Local de Suelos  相似文献   
40.
Much of the biodiversity‐related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop‐climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near‐term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning. Uso de Cambios en la Utilidad Agrícola para Cuantificar Riesgos Futuros para la Conservación Inducidos por el Clima  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号