首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1183篇
  免费   107篇
  国内免费   310篇
安全科学   109篇
废物处理   17篇
环保管理   355篇
综合类   579篇
基础理论   142篇
污染及防治   272篇
评价与监测   55篇
社会与环境   48篇
灾害及防治   23篇
  2024年   2篇
  2023年   25篇
  2022年   50篇
  2021年   57篇
  2020年   43篇
  2019年   46篇
  2018年   34篇
  2017年   47篇
  2016年   50篇
  2015年   51篇
  2014年   56篇
  2013年   78篇
  2012年   84篇
  2011年   76篇
  2010年   52篇
  2009年   91篇
  2008年   73篇
  2007年   79篇
  2006年   78篇
  2005年   54篇
  2004年   65篇
  2003年   36篇
  2002年   45篇
  2001年   66篇
  2000年   45篇
  1999年   25篇
  1998年   33篇
  1997年   27篇
  1996年   12篇
  1995年   10篇
  1994年   12篇
  1993年   12篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   9篇
  1984年   5篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1978年   3篇
  1975年   2篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
排序方式: 共有1600条查询结果,搜索用时 19 毫秒
101.
102.
Abstract: Knowledge of headwater influences on the water‐quality and flow conditions of downstream waters is essential to water‐resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water‐quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass‐balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water‐quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first‐order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first‐order headwaters contribute approximately 70% of the mean‐annual water volume and 65% of the nitrogen flux in second‐order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth‐ and higher‐order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water‐resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.  相似文献   
103.
This paper examines the importance of the correlation between hydraulic conductivity (K) and degradation rate constant (k) during the transport of reactive contaminants in heterogeneous aquifers. We simulated reactive transport in an ensemble of two-dimensional heterogeneous aquifers. Two sets of transport simulations were conducted: one in which a perfect positive correlation was assumed between ln(K) and ln(k), and one in which a perfect negative correlation was assumed. We found that the sign of the correlation has important consequences for the contaminant transport. Qualitatively, a negative correlation leads to significantly more pronounced "fingering" of the contaminant plume than does a positive correlation, with potentially important consequences for downgradient receptors. Quantitatively, the expected behavior (as quantified by the contaminant mass remaining in the aquifer) is statistically different between the positive and negative cases: on average, more contaminant mass persists when K and k are negatively correlated. Also, the negative correlation leads to more variability between realizations of the ensemble, whereas a positive correlation induces relatively little variability between realizations. We discuss the implications of these findings for the management of contaminated aquifers.  相似文献   
104.
In this study, the influence of the co-existence of TiO2 nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO2 nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO2 nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO2 nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO2 nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO2 nanoparticles than in the absence of TiO2 nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO2 nanoparticles.  相似文献   
105.
Various abiotic and biotic processes such as sorption, dilution, and degradation are known to affect the fate of organic contaminants, such as petroleum hydrocarbons in saturated porous media. Reactive transport modeling of such plumes indicates that the biodegradation of organic pollutants is, in many cases, controlled by mixing and therefore occurs locally at the plume's fringes, where electron donors and electron-acceptors mix. Herein, we aim to test whether this hypothesis can be verified by experimental results obtained from aerobic and anaerobic degradation experiments in two-dimensional sediment microcosms. Toluene was selected as a model compound for oxidizable contaminants. The two-dimensional microcosm was filled with quartz sand and operated under controlled flow conditions simulating a contaminant plume in otherwise uncontaminated groundwater. Aerobic degradation of toluene by Pseudomonas putida mt-2 reduced a continuous 8.7 mg L(-1) toluene concentration by 35% over a transport distance of 78 cm in 15.5 h. In comparison, under similar conditions Aromatoleum aromaticum strain EbN1 degraded 98% of the toluene infiltrated using nitrate (68.5+/-6.2 mg L(-1)) as electron acceptor. A major part of the biodegradation activity was located at the plume fringes and the slope of the electron-acceptor gradient was steeper during periods of active biodegradation. The distribution of toluene and the significant overlap of nitrate at the plume's fringe indicate that biokinetic and/or microscale transport processes may constitute additional limiting factors. Experimental data is corroborated with results from a reactive transport model using double Monod kinetics. The outcome of the study shows that in order to simulate degradation in contaminant plumes, detailed data sets are required to test the applicability of models. These will have to deal with the incorporation of existing parameters coding for substrate conversion kinetics and microbial growth.  相似文献   
106.
Solute transport in fractured rocks is of major interest in many applications, from the petroleum industry to ground water management. This work focuses on the dispersion process in a transparent replica of a real single fracture. The fracture exhibits strong changes in heterogeneity, with the first half very heterogeneous and the second half fairly homogeneous. Three models have been used to interpret the tracer experiments: the classical advection-dispersion equation (ADE), the continuous time random walk (CTRW), and the stratified model. The main goals were to test these models and to study possible correlations between fitting parameters and heterogeneities. As expected, the solution derived from the ADE equation appears to be unable to model long-time tailing behavior. On the other hand, the results confirm the CTRW robustness and the coefficient beta seems well correlated to heterogeneities. Finally, the stratified model is also able to describe non-Fickian dispersion. The parameters defined by this model are correlated to the heterogeneities of the fracture.  相似文献   
107.
BACKGROUND, AIM, AND SCOPE: The distribution of chlorinated organic contaminants in groundwater and the importance of colloids were studied in groundwater from a sawmill site contaminated by chlorophenol preservatives. MATERIALS AND METHODS: The groundwater was fractionated into three different size ranges: (1) >0.7 mum, (2) 0.4-0.7 mum and (3) 0.2-0.4 mum and the filtered water phase. The concentrations of chlorophenols (CP), chlorinated phenoxy phenols (PCPP), chlorinated diphenyl ethers (PCDE), chlorinated dibenzofurans (PCDF) and chlorinated dibenzo-p-dioxins (PCDD) were determined in each fraction. The colloids were characterised regarding the chemical composition using X-ray photoelectron spectroscopy (XPS). RESULTS: Chlorophenols were mostly found in the water fraction and PCDD/Fs were found almost exclusively in the particulate fractions. For example, the filtered water phase contained 2,100 mug l(-1) and 0.72 ng l(-1) for CPs and PCDD/Fs, respectively, and the particulate fractions contained 27 mug l(-1) and 32 ng l(-1) for CPs and PCDD/Fs, respectively. XPS evaluation of the particulate phases showed no correlation between the surface chemistry of the particle properties and the distribution of chlorinated compounds. DISCUSSION: The results suggest that groundwater transport of CPs, PCPPs, PCDEs and PCDD/Fs may occur from contaminated sawmill sites and that the colloid-facilitated transport, especially of PCDD/Fs, is substantial. The results correlated well with previous studies of compounds sorbed to dissolved organic carbon, which indicate that dissolved and colloidal organic carbon facilitated the transport of PCDEs, PCDFs and PCDDs particularly. CONCLUSIONS: Several classes of chlorinated compounds were readily detected in the groundwater samples. Due to the differences in their physicochemical properties, CPs, PCPPs, PCDEs and PCDD/Fs vary in their partitioning between colloidal fractions and the filtered groundwater. The proportion of the bound fraction increased with an increasing hydrophobicity of the chlorinated compounds. The groundwater transport of colloid-associated pollutants from the site may be significant. RECOMMENDATIONS AND PERSPECTIVES: The results imply that colloidal particles <0.7 mum are freely mobile in groundwater from this site. The groundwater transport of colloid-associated pollutants may be significant. However, the extent of the problem is not yet known and, thus, further research is needed to evaluate the impact of colloidal transport of hydrophobic organic contaminants. In Sweden alone, 400 to 500 sawmill sites are estimated to be contaminated with PCDD/Fs as a result of the former use of CP-based wood preservatives. The widespread use of CP mixtures for a variety of applications, including wood preservation, indicates that potential colloidal transport will be an issue of concern in many countries.  相似文献   
108.
The potential contamination of groundwater by herbicides is often controlled by processes in the vadose zone, through which herbicides travel before entering groundwater. In the vadose zone, both physical and chemical processes affect the fate and transport of herbicides, therefore it is important to represent these processes by mathematical models to predict contaminant movement. To simulate the movement of simazine, a herbicide commonly used in Chilean vineyards, batch and miscible displacement column experiments were performed on a disturbed sandy soil to quantify the primary parameters and processes of simazine transport. Chloride (Cl(-)) was used as a non-reactive tracer, and simazine as the reactive tracer. The Hydrus-1D model was used to estimate the parameters by inversion from the breakthrough curves of the columns and to evaluate the potential groundwater contamination in a sandy soil from the Casablanca Valley, Chile. The two-site, chemical non-equilibrium model was observed to best represent the experimental results of the miscible displacement experiments in laboratory soil columns. Predictions of transport under hypothetical field conditions using the same soil from the column experiments were made for 40 years by applying herbicide during the first 20 years, and then halting the application and considering different rates of groundwater recharge. For recharge rates smaller than 84 mm year(-1), the predicted concentration of simazine at a depth of 1 m is below the U.S. EPA's maximum contaminant levels (4 microg L(-1)). After eight years of application at a groundwater recharge rate of 180 mm year(-1) (approximately 50% of the annual rainfall), simazine was found to reach the groundwater (located at 1 m depth) at a higher concentration (more than 40 microg L(-1)) than the existing guidelines in the USA and Europe.  相似文献   
109.
110.
特大型城市客运交通碳排放与减排对策研究   总被引:2,自引:0,他引:2  
本文基于对现有城市交通碳排放测算方法的比较分析,以上海市为例,采用IPCC"自下而上"法对特大型城市客运交通CO2排放进行了测算,结果显示:轨道交通是碳排放效率最高的客运方式,出租车最低;客运交通CO2排放总量增长迅速,且碳源结构发生了较大变化;近年客运交通CO2排放增量主要来自私人载客汽车,同时公务交通在客运交通碳排放中始终占较大比重。由此本文认为,控制客运交通碳排放的关键在于对以私人载客汽车和单位载客汽车为主的个体交通的管理和控制,形成以公共交通为主的交通结构。在此基础上,为了将控制碳排放纳入到城市交通政策目标中去,本文就主要城市交通政策对客运交通碳排放产生的影响进行了深入分析,并得出结论:以往的交通供给、需求管理政策对于抑制客运交通碳排放增长的作用有限;而就目前城市空间发展政策的实施效果而言,也不利于降低居民出行的碳排放水平。文章最后分别从交通供给、需求管理以及城市空间角度给出了控制客运交通碳排放的对策。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号