首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  国内免费   9篇
环保管理   7篇
综合类   17篇
基础理论   7篇
污染及防治   27篇
社会与环境   1篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1992年   1篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
11.
Enhanced sludge solubilization by microbubble ozonation   总被引:7,自引:0,他引:7  
Chu LB  Yan ST  Xing XH  Yu AF  Sun XL  Jurcik B 《Chemosphere》2008,72(2):205-212
A microbubble ozonation process for enhancing sludge solubilization was proposed and its performance was evaluated in comparison to a conventional ozone bubble contactor. Microbubbles are defined as bubbles with diameters less than several tens of micrometers. Previous studies have demonstrated that microbubbles could accelerate the formation of hydroxyl radicals and hence improve the ozonation of dyestuff wastewater. The results of this study showed that microbubble ozonation was effective in increasing ozone utilization and improving sludge solubilization. For a contact time of 80 min, an ozone utilization efficiency of more than 99% was obtained using the microbubble system, while it gradually decreased from 94% to 72% for the bubble contactor. The rate of microbial inactivation was obviously faster in the microbubble system. At an ozone dose of 0.02 g O3 g−1 TSS, about 80% of microorganisms were inactivated in the microbubble system, compared with about 50% inactivation for the bubble contactor. Compared to the bubble contactor, more than two times of COD and total nitrogen, and eight times of total phosphorus content were released from the sludge into the supernatant by using the microbubble system at the same ozone dosage. The application of microbubble technology in ozonation processes may provide an effective and low cost approach for sludge reduction.  相似文献   
12.
采用非均相催化臭氧氧化工艺深度处理化工废水二级生化出水,探索负载不同活性组分的活性炭催化剂及该工艺处理化工废水的影响因素。结果表明:当进水COD为85~110 mg/L,臭氧投加量为60 mg/L,催化剂投加量为200 mg/L Cr时,臭氧氧化、ACCA-1、ACCA-2和ACCA-3催化臭氧氧化对出水COD的平均去除率分别为22.46%、32.7%、40.5%和35.7%,3种催化剂均可强化臭氧氧化效果。活性炭催化剂能提高臭氧利用率,叔丁醇对ACCA-2抑制效果最明显。  相似文献   
13.
In this paper, the response mechanism of activated sludge exposed to low-dose ozone at less than 20 mg O3 g−1 total suspended solids (TSS) was studied by analyzing the changes in sludge activity and the evolution of C, N, P and metals from sludge following ozonation. The intracellular ATP concentration was not affected at less than 5 mg O3 g−1 TSS and thereafter decreased rapidly to around 60% when the ozone dose increased to 20 mg O3 g−1 TSS. Similarly, the efficiency of sludge solubilization initially changed a little and then increased rapidly to around 30% at an ozone dose of 20 mg O3 g−1 TSS. However, the activities of superoxide dismutase and protease decreased immediately upon exposure to ozone. These findings indicate that ozone firstly destroys the floc, leading to the disruption of the compact aggregates, which does not affect cells viability but induces a decrease in enzyme activities. Ozone then attacks the bacterial cells of the sludge, causing a decrease in cells viability. During ozonation, the content of carbon, nitrogen and phosphorus in the sludge matrix decreased, while the content of these elements in the micro-solids and supernatant gradually increased. Most of the released metals from the sludge matrix were found in the micro-solids.  相似文献   
14.
Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.  相似文献   
15.
木糖生产废水的脱色研究   总被引:2,自引:0,他引:2  
吴文娟 《四川环境》2003,22(4):20-22
实验表明用臭氧化法进行木糖生产废水的脱色处理效果颇佳。在30分钟内就能达到90%的去除率,反应速度受pH、温度等因素影响较小。实验同时表明,臭氧氧化法对COD的去除效果不理想,需要和其它方法结合处理。  相似文献   
16.
垃圾渗滤液生物处理出水臭氧氧化的研究   总被引:3,自引:1,他引:2  
对垃圾渗滤液生物处理出水进行了臭氧氧化的研究。研究表明,随着氧化时间的延长,CODCr去除率增大;在碱性条件下进行臭氧氧化。pH越高,CODCr去除效率越高。采用BOD5/CODCr来表征垃圾渗滤液的生物降解性,研究了臭氧氧化前后垃圾渗滤液生物处理出水的生物降解性变化规律,表明臭氧氧化可以提高垃圾渗滤液生物处理出水的生物降解性,但提高的幅度不大。通过色谱-质谱法(GC—MC)对臭氧氧化前后垃圾渗滤液的成分进行分析,结果表明,臭氧氧化前后废水中的主要成分没有发生变化,仍然为难降解物质;臭氧氧化使废水中的部分物质发生了结构上的变化,减少、消失和生成的物质多为可降解物质。  相似文献   
17.
The distributions of ARGs were monitored in a WWTP in Harbin during six months. CASS had the best removal efficacy of ARGs compared to other processes in the WWTP. UV disinfection could effectively control the HGT. AGAC significantly remove ARGs and organics due to its high absorption capacity. Combination of ozone and AGAC significantly improve removal of ARGs and organics. Antibiotic resistance genes (ARGs) pose a serious threat to public health. Wastewater treatment plants (WWTPs) are essential for controlling the release of ARGs into the environment. This study investigated ARG distribution at every step in the treatment process of a municipal WWTP located in Harbin for six consecutive months. Changes in ARG distribution involved in two advanced secondary effluent treatment processes, ozonation and granular activated carbon (GAC) adsorption, were analyzed. Biological treatment resulted in the highest ARG removal (0.76–1.94 log reduction), followed by ultraviolet (UV) disinfection (less than 0.5-log reduction). Primary treatment could not significantly remove ARGs. ARG removal efficiency increased with an increase in the ozone dose below 40 mg/L. However, amorphous GAC (AGAC) adsorption with a hydraulic retention time (HRT) of 1 h showed better removal of ARGs, total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) than ozonation at a 60 mg/L dose. UV treatment could efficiently reduce the relative ARG abundance, despite presenting the lowest efficiency for the reduction of absolute ARG abundance compared with GAC and ozone treatments. The combination of ozone and AGAC can significantly improve the removal of ARGs, TOC, TN and TP. These results indicate that a treatment including biological processing, ozonation, and AGAC adsorption is a promising strategy for removing ARGs and refractory organic substances from sewage.  相似文献   
18.
• SMX was mainly degraded by hydrolysis, isoxazole oxidation and double-bond addition. • Isoxazole oxidation and bond addition products were formed by direct ozonation. • Hydroxylated products were produced by indirect oxidation. • NOM mainly affected the degradation of SMX by consuming OH rather than O3. • Inhibitory effect of NOM on SMX removal was related to the components’ aromaticity. Sulfamethoxazole (SMX) is commonly detected in wastewater and cannot be completely decomposed during conventional treatment processes. Ozone (O3) is often used in water treatment. This study explored the influence of natural organic matters (NOM) in secondary effluent of a sewage treatment plant on the ozonation pathways of SMX. The changes in NOM components during ozonation were also analyzed. SMX was primarily degraded by hydrolysis, isoxazole-ring opening, and double-bond addition, whereas hydroxylation was not the principal route given the low maximum abundances of the hydroxylated products, with m/z of 269 and 287. The hydroxylation process occurred mainly through indirect oxidation because the maximum abundances of the products reduced by about 70% after the radical quencher was added, whereas isoxazole-ring opening and double-bond addition processes mainly depended on direct oxidation, which was unaffected by the quencher. NOM mainly affected the degradation of micropollutants by consuming OH rather than O3 molecules, resulting in the 63%–85% decrease in indirect oxidation products. The NOM in the effluent were also degraded simultaneously during ozonation, and the components with larger aromaticity were more likely degraded through direct oxidation. The dependences of the three main components of NOM in the effluent on indirect oxidation followed the sequence: humic-like substances>fluvic-like substances>protein-like substances. This study reveals the ozonation mechanism of SMX in secondary effluent and provides a theoretical basis for the control of SMX and its degradation products in actual water treatment.  相似文献   
19.
p- CNB and IBP were selected, to explore factors determining ozonation outcomes. ● •OH contributed only 50 % to IBP removal, compared to the 90 % for p -CNB removal. ● IBP achieved fewer TOC removal and more by-product types and quantities. ● A longer ring-opening distance existed during the degradation of IBP. ● Multiple positions on both branches of IBP were attacked, consuming more oxidants. For aromatic monomer compounds (AMCs), ozonation outcomes were usually predicted by the substituents of the benzene ring based on the electron inductive effect. However, the predicted results were occasionally unreliable for complex substituents, and other factors caused concern. In this study, p-chloronitrobenzene (p-CNB) and ibuprofen (IBP) were selected for ozonation. According to the electron inductive theory, p-CNB should be less oxidizable, but the opposite was true. The higher rates of p-CNB were due to various sources of assistance. First, the hydroxyl radical (•OH) contributed 90 % to p-CNB removal at pH 7.0, while its contribution to IBP removal was 50 %. Other contributions came from molecular O3 oxidation. Second, p-CNB achieved 40 % of the total organic carbon (TOC) removal and fewer by-product types and quantities, when compared to the results for IBP. Third, the oxidation of p-CNB started with hydroxyl substitution reactions on the benzene ring; then, the ring opened. However, IBP was initially oxidized mainly on the butane branched chain, with a chain-shortening process occurring before the ring opened. Finally, the degradation pathway of p-CNB was single and consumed fewer oxidants. However, both branches of IBP were attacked simultaneously, and three degradation pathways that relied on more oxidants were proposed. All of these factors were determinants of the rapid removal of p-CNB.  相似文献   
20.
Abstract

Comparison of the effects and kinetics of UV photolysis and four advanced oxidation systems (ozone, ozone/hydrogen peroxide, ozone/UV radiation and UV radiation/hydrogen peroxide) for the removal of simazine from water has been investigated. At the conditions applied, the order of reactivity was ozone < ozone/hydrogen peroxide < UV radiation < ozone/UV radiation and UV radiation/hydrogen peroxide. Rate constants of the reactions between ozone and simazine and hydroxyl radical and simazine were found to be 8.7 M‐1s‐1 and 2.1x109 M‐1s‐1, respectively. Also, a quantum yield of 0.06 mol.photon‐1 was found for simazine at 254 nm UV radiation. The high value of the quantum yield corroborated the importance of the direct photolysis process. Percentage contributions of direct reaction with ozone, reaction with hydroxyl radicals and direct photolysis were also quantified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号