首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   2篇
  国内免费   19篇
安全科学   5篇
废物处理   17篇
环保管理   64篇
综合类   54篇
基础理论   96篇
污染及防治   98篇
评价与监测   8篇
社会与环境   18篇
灾害及防治   19篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   8篇
  2015年   9篇
  2014年   19篇
  2013年   33篇
  2012年   16篇
  2011年   39篇
  2010年   20篇
  2009年   49篇
  2008年   30篇
  2007年   16篇
  2006年   11篇
  2005年   5篇
  2004年   9篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1977年   1篇
排序方式: 共有379条查询结果,搜索用时 15 毫秒
371.
Sven Kullander 《Ambio》2010,39(3):249-256
Humankind is currently faced with the huge challenge of securing a sustainable energy supply and biofuels constitute one of the major options. However, the commercially traded edible crops are barely sufficient to meet food demand of the present world population. Certain regions, for example EU-27, do not even have a sufficient indigenous crop production. Of this follows that motor biofuels based on edible crops should be avoided. To replace more than some percent of the fossil motor fuels, non-edible biomass—rest products and wastes—should instead be considered for conversion to biofuels. In this way, about 10% of the current fossil fuels can be replaced. Feeding a world population expected to grow by some 50% during the next 50 years will be a major challenge. For environmental reasons it seems that agricultural land cannot be expanded very much, maybe not at all. The solution to the increasing food demand seems therefore to be using the present crop production more efficiently and increasing output from present agricultural land, maintaining biodiversity and climate stability within reasonable limits. In the future, agriculture will need more energy and more water irrigation. Food production is, however, already very energy demanding, requiring several times more externally provided energy than the energy content of the food itself. A sufficient energy supply will be a key issue for the future farming!  相似文献   
372.
A database of global agricultural primary production has been constructed and used to estimate its energy content. The portion of crops available for food and biofuel after postharvest losses was evaluated. The basic conditions for agriculture and plant growth were studied, to ensure sustainable scenarios regarding use of residues. The available energy contents for the world and EU27 was found to be 7,200–9,300 and 430 TWh, respectively, to be compared with food requirements of 7,100 and 530 TWh. Clearly, very little, or nothing, remains for biofuel from agricultural primary crops. However, by using residues and bioorganic waste, it was found that biofuel production could theoretically replace one-fourth of the global consumption of fossil fuels for transport. The expansion potential for global agriculture is limited by availability of land, water, and energy. A future decrease in supply of fossil energy and ongoing land degradation will thus cause difficulties for increased biofuel production from agriculture.  相似文献   
373.
The transfer of Cd and Zn from soils amended with sewage sludge was followed through a food chain consisting of wheat, aphids and the predator Coccinella septempunctata. Multiple regression models were generated to predict the concentrations of Cd and Zn in C. septempunctata. No significant model could be generated for Cd, indicting that the concentration of this metal was maintained within relatively narrow limits. A model predicting 64% of the variability in the Zn concentration of C. septempunctata was generated from of the concentration of Zn in the diet, time and rate of Zn consumption. The results suggest that decreasing the rate of food consumption is an effective mechanism to prevent the accumulation of Zn and that the availability of Zn in the aphid prey increased with the concentration in the aphids. The results emphasise the importance of using ecologically relevant food chains and exposure pathways during ecotoxicological studies.  相似文献   
374.
375.
Extensive aquatic or semi-aquatic production of water spinach (Ipomoea aquatica Forssk.) for human consumption takes place in Southeast Asia. The aim of this study was to assess the concentrations of 38 elements in soil and water spinach cultivated under different degrees of wastewater exposure in Hanoi, Vietnam. The results showed no effect of wastewater use on the overall element concentrations in soil and water spinach. Mean soil concentrations for selected potentially toxic elements at the studied field sites had the following ranges 9.11–18.7 As, 0.333–0.667 Cd, 10.8–14.5 Co, 68–122 Cr, 34.0–62.1 Cu, 29.9–52.8 Ni, 32.5–67.4 Pb, 0.578–0.765 Tl and 99–189 Zn mg kg−1 dry weight (d.w.). In all samples Cd, Pb and Zn soil concentrations were below the Vietnamese Guideline Values (TCVN 7209-2002) for agricultural soils whereas As and Cu exceeded the guideline values. Maximum site element concentrations in water spinach were 0.139 As, 0.032 Cd, 0.135 Cr, 2.01 Cu, 39.1 Fe, 57.3 Mn, 0.16 Ni, 0.189 Pb and 6.01 Zn mg kg−1 fresh weight (f.w.). The site and soil content of organic carbon were found to have high influence on the water spinach element concentrations whereas soil pH and the total soil element concentrations were of less importance. The estimated average daily intake of As, Cd, Cu, Fe, Pb and Zn for adult Vietnamese consumers amounts to <11% of the maximum tolerable intake proposed by FAO/WHO for each element. It is assessed that the occurrence of the investigated elements in water spinach will pose low health risk for the consumers.  相似文献   
376.
Bioaccessibility of organic pollutants in food is important for exposure estimation and risk assessment. An in vitro enzyme digestion experiment was carried out to analyze the bioaccessibility of PCBs in different foods including freshwater fish (bighead carp and oriental weather fish) and vegetables (spinach and cabbage). The results indicated that the bioaccessibility of PCBs in freshwater fish (3%) was much lower than that in leafy vegetables (25%). Based on field survey, the daily exposure TEQ value from these two types of food was 17.9 pg/kg bw/day. However, when bioaccessibility was taken into consideration, the value decreased to 0.61 pg/kg bw/day. Therefore, the forms of PCBs existing in food strongly influenced the bioavailability for humans, which may have important implications on dietary exposure. To our knowledge, this is the first paper to illustrate the bioaccessibility of PCBs in different foods using an in vitro digestion method.  相似文献   
377.
The environmental impacts of food waste management strategies and the effects of energy mix were evaluated using a life cycle assessment model, EASEWASTE. Three different strategies involving landfill, composting and combined digestion and composting as core technologies were investigated. The results indicate that the landfilling of food waste has an obvious impact on global warming, although the power recovery from landfill gas counteracts some of this. Food waste composting causes serious acidification (68.0 PE) and nutrient enrichment (76.9 PE) because of NH3 and SO2 emissions during decomposition. Using compost on farmland, which can marginally reduce global warming (−1.7 PE), acidification (−0.8 PE), and ecotoxicity and human toxicity through fertilizer substitution, also leads to nutrient enrichment as neutralization of emissions from N loss (27.6 PE) and substitution (−12.8 PE). A combined digestion and composting technology lessens the effects of acidification (−12.2 PE), nutrient enrichment (−5.7 PE), and global warming (−7.9 PE) mainly because energy is recovered efficiently, which decreases emissions including SO2, Hg, NOx, and fossil CO2 during normal energy production. The change of energy mix by introducing more clean energy, which has marginal effects on the performance of composting strategy, results in apparently more loading to acidification and nutrient enrichment in the other two strategies. These are mainly because the recovered energy can avoid fewer emissions than before due to the lower background values in power generation. These results provide quantitative evidence for technical selection and pollution control in food waste management.  相似文献   
378.
The ability for small islands to meet sustainability goals is exacerbated by the costs of transporting goods on, and then, wastes off the islands. At small scales, recycling can be prohibitive and complicated by labor costs; the need to profitably recycle and manage solid waste output from tourism is complicated by scale and available technologies. A multi-year study documents the amount of solid waste generated on Great Exuma (Exuma), The Commonwealth of The Bahamas since 2010 with one year of benchmarking, then limited recycling of food waste generation by an all-inclusive resort, Sandals Emerald Bay (SEB). For the island of Exuma, the rapid increase in the rate of accumulation of solid waste associated with a large destination resort has led to an increase in pests such as rats and flies, along with an increased occurrence of fires associated with unburied solid waste. Solid waste has accumulated faster than the island solid waste management can absorb. SEB kitchen and hotel operations contributes an estimated 36% of all solid waste generated on the island, about 1752 t1 out of a total of 4841 t generated on the island in 2013 (exclusive of vegetation waste). Based on 4 weeks of benchmarking, 48.5% of all the waste coming out of the SEB resort is compostable, organic waste, but waste composition varies widely over time. Exuma Waste Management (EWM) and Recycle Exuma (RE), both privately-held Bahamian businesses, worked for one year (2012–2013) with SEB resort to implement a benchmarking and pilot recycling project to meet Earth Check green resort certification requirements. This paper outlines the costs and resources required for food waste recycling and some barriers to implementing more effective solid waste management for the tourism industry on small islands.  相似文献   
379.
Food waste can be valorized through different technologies, such as anaerobic digestion, incineration, and animal feed production. In this study we analyzed the environmental performance of two food waste valorization scenarios from a company of the retail sector in Belgium, through exergy analysis, exergetic life cycle assessment (ELCA), and a traditional life cycle assessment (LCA). In scenario 1 all food waste was considered to be valorized in an anaerobic digestion (producing electricity, heat, digestate and sorting the packaging material to be used as fuel for cement industry), while in scenario 2 a bread fraction was valorized to produce animal feed and a non-bread fraction was valorized in an anaerobic digestion (producing the same products on scenario 1, but in lower amounts). Scenario 2 was 10% more efficient than scenario 1 in the exergy analysis. For the ELCA and the single score LCA, scenario 2 presented lower environmental impacts than scenario 1 (32% and 26% lower, respectively). These results were mainly due to the avoided products from traditional supply chain (animal feed produced from agricultural products) and lower exergy loss at the feed production plant. Nevertheless, the high dry matter content of the bread waste played an important role on these results, therefore it should be pointed out that valorizing food waste to animal feed seems to be a better option only for the fractions of food waste with low water content (as bread waste).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号