首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  国内免费   25篇
安全科学   2篇
环保管理   1篇
综合类   31篇
基础理论   6篇
污染及防治   7篇
评价与监测   3篇
灾害及防治   1篇
  2023年   9篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2015年   3篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1994年   2篇
  1985年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
41.
Nowadays,widespread researches have been focused on the development of effective photocatalysts to remove pollutants of the aquatic system.In accordance with the universal studies,two new sets of UiO-66@metal oxide(including ZnO and TiO_2)/graphene oxide heterojunctions were synthesized for photodegradation of aromatic(tetracycline)and nonaromatic(malathion) pollutants which are challenging cases in the environment.The dosage of the photocatalyst,pH of the solution,the type of metal oxide,and the presence of various scavengers are assayed parameters in this work.In the optimum condition,maximum photodegradation efficiency is achieved in 90 min for tetracycline(81%) and malathion(100%) by the UiO-66@ZnO/graphene oxide.The superior separation of charge carriers by Z-scheme mechanism,excellent electron mobility on layers of graphene oxide and high surface area are factors that enhanced the efficiency.Furthermore,in comparison with pure UiO-66,the band gaps belong to heterojunctions revealed a red shift in the absorption edge,which can be responsible for more expand adsorption of the solar spectrum.Total organic carbon analysis verified the decontamination of these pollutants in the solution.The produced main intermediates during the photocatalytic process were identified and the possible degradation pathway proposed.In general,the superior photocatalytic activity suggests that these designed photocatalysts can be a promising choice for having a clean future.  相似文献   
42.
The influence of tetracycline(TC) antibiotics on phosphine(PH_3) production in the anaerobic wastewater treatment was studied. A lab-scale anaerobic baffled reactor with three compartments was employed to simulate this process. The reactor was operated in a TC-absence wastewater and 250 μg/L TC-presence wastewater for three months after a start-up period,respectively. The responses of p H, oxidation–reduction potential(ORP), chemical oxygen demand(COD), total phosphorus(TP), enzymes activity(dehydrogenase and acid phosphatase),and microbial community were investigated to reveal the effect of TC on PH_3 production.Results suggested that the dehydrogenase(DH) activity, acid phosphatase(ACP) activity and COD have positive relationship with PH_3 production, while p H, ORP level and the TP in liquid phase have negative relationship with PH_3 production. With prolonged TC exposure, decrease in p H and increase in DH activity are beneficial to PH_3 production, while decrease in COD and ACP activity are not the limiting factors for PH_3 production.  相似文献   
43.
Tetracyclines(TCs) discharged from livestock wastewater have aroused public concerns due to their pharmacological threats to ecosystems and human health. As an important medium in the wastewater, suspended organic matters(SOMs) play vital roles in antibiotics transport and degradation. However, limited information has been reported in the relevant literature. This study investigated TCs sorption behavior on SOM, withdrawn from swine wastewater. High TCs sorption capacities were detected, with the maximum values ranging from 0.337 to 0.679 mg/g. Increasing p H and temperature led to the decline of sorption capacity. Results from three-dimensional excitation–emission matrix fluorescence spectroscopy and Fourier transform infrared spectrometry revealed that amide and carboxyl groups were the main functional groups for TCs adsorption. The interactions between SOM and TCs were clarified as predominated by hydrogen-bonding and cation-exchange in acid conditions, and electrostatic repulsion in neutral or alkaline conditions. Adsorption kinetics modeling was conducted, and a satisfactory fitting was achieved with the Freundlich equation. These results indicated that the adsorption process was a rather complex process, involving a combination of cation-exchange and hydrogen-bonding. The results will provide a better understanding of the capability of SOM for TCs transport and abatement in the wastewater treatment process.  相似文献   
44.
分别采用十二烷基三甲基溴化铵(DTAB)和十二烷基磺酸钠(SDS)对十二烷基二甲基甜菜碱(BS-12)修饰高岭土(K)进行复配修饰,以批处理法探究其对紫色土(PS)吸附四环素(TC)的影响。结果表明:TC吸附是自发、吸热和熵增的反应,各供试材料对TC的吸附均符合Langmuir模型,且相同条件下60%复配修饰效果更佳。各供试材料对TC的吸附量均随着温度和pH值的升高而增加(除PS/K60%BS+60%SD外)。当温度为20℃,pH值为5,离子浓度为0.1 mol/L时,吸附量达到最大值5.64 mmol/kg~42.7 mmol/kg。  相似文献   
45.
Polydopamine/NZVI@biochar composite (PDA/NZVI@BC) with high removal efficiency of tetracycline (TC) in aqueous solutions was successfully synthesized. The resultant composite demonstrated high reactivity, excellent stability and reusability over the reaction course. Such excellent performance can be attributed to the presence of the huge surface area on biochar (BC), which could enhance NZVI dispersion and prolong its longevity. The carbonyl group contained on the surface of biochar could combine with the amino group on polydopamine(PDA). The hydroxyl groups in PDA is able to enhance the dispersion and loading of NZVI on BC. Being modified by PDA, the hydrophilicity of biochar was improved. Among BC, pristine NZVI and PDA/NZVI@BC, PDA/ NZVI@BC exhibited the highest activity for removal of TC. Compared with NZVI, the removal efficiency of TC could be increased by 55.9% by using PDA/NZVI@BC under the same conditions. The optimal modification time of PDA was 8h, and the ratio of NZVI to BC was 1:2. In addition, the possible degradation mechanism of TC was proposed, which was based on the analysis of degraded products by LC-MS. Different important factors impacting on TC removal (including mass ratio of NZVI to BC/PDA, initial concentration, pH value and the initial temperature of the solution) were investigated as well. Overall, this study provides a promising alternative material and environmental pollution management option for antibiotic wastewater treatment.
  相似文献   
46.
Co-exposure to heavy metal and antibiotic pollution might result in complexation and synergistic interactions, affecting rice growth and further exacerbating pollutant enrichment. Therefore, our study sought to clarify the influence of different Tetracycline (TC) and Cadmium(Cd) concentration ratios (both alone and combined) on rice growth, pollutant accumulation, and transportation during the tillering stage in hydroponic system. Surprisingly, our findings indicated that the interaction between TC and Cd could alleviate the toxic effects of TC/Cd on aerial rice structures and decrease pollutant burdens during root elongation. In contrast, TC and Cd synergistically promoted the accumulation of TC/Cd in rice roots. However, their interaction increased the accumulation of TC in roots while decreasing the accumulation of Cd when the toxicant doses increased. The strong affinity of rice to Cd promoted its upward transport from the roots, whereas the toxic effects of TC reduced TC transport. Therefore, the combined toxicity of the two pollutants inhibited their upward transport. Additionally, a low concentration of TC promoted the accumulation of Cd in rice mainly in the root tip. Furthermore, a certain dose of TC promoted the upward migration of Cd from the root tip. Laser ablation-inductively coupled plasma mass spectrometry demonstrated that Cd mainly accumulated in the epidermis and stele of the root, whereas Fe mainly accumulated in the epidermis, which inhibited the absorption and accumulation of Cd by the rice roots through the generation of a Fe plaque. Our findings thus provide insights into the effects of TC and Cd co-exposure on rice growth.  相似文献   
47.
Fertilizing soils with animal excrements from farms with common antibiotic use represents a risk of disseminating antibiotic resistance genes into the environment. In the case of tetracycline antibiotics, it is not clear, however, whether the presence of antibiotic residues further enhances the gene occurrence in manured soils. We established a microcosm experiment in which 3 farm soils that had no recent history of fertilization with animal excrements were amended on a weekly basis (9 times) with excrements from either an oxytetracycline-treated or an untreated cow. Throughout the study, the concentration of oxytetracycline in excrements from the treated cow was above 500 μg g−1 dw, whereas no oxytetracycline was detected in excrements from the healthy cow. Both excrements contained tetracycline resistance (TC-r) genes tet(L), tet(M), tet(V), tet(Z), tet(Q) and tet(W). The excrements from the treated cow also contained the tet(B) gene, and a higher abundance of tet(Z), tet(Q) and tet(W). Three weeks after the last excrement addition, the individual TC-r genes differed in their persistence in soil: tet(Q) and tet(B) were not detectable while tet(L), tet(M), tet(Z) and tet(W) were found in all 3 soils. There were, however, no significant differences in the total number, nor in the abundance, of TC-r genes between soil samples amended with each excrement type. The oxytetracycline-rich and the oxytetracycline-free excrement therefore contributed equally to the increase of tetracycline resistome in soil. Our results indicate that other mechanisms than OTC-selection pressure may be involved in the maintenance of TC-r genes in manured soils.  相似文献   
48.
In order to study the influences of functionalized groups onto the adsorption of tetracycline (TC), we prepared a series of amino and amino–Fe3 + complex mesoporous silica adsorbents with diverse content of amino and Fe3 + groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction, Fourier transform infrared spectrometer and N2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe3 + groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe3 + increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe3 + content increased from 3.93% to 8.26%, the Qmax of the adsorbents increased from 102 to 188 mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications.  相似文献   
49.
Tetracycline photolysis in natural waters: loss of antibacterial activity   总被引:1,自引:0,他引:1  
Previous work has shown that tetracycline undergoes direct photolysis in the presence of sunlight, with the decomposition rate highly dependent on conditions such as water hardness and pH. The purpose of this study was to examine the potential long-term significance of photoproducts formed when tetracycline undergoes photodegradation under a range of environmentally relevant conditions. Tetracycline was photolyzed in nine different natural and artificial water samples using simulated sunlight. The pH values of the samples ranged from 5 to 9. Total hardness values (combined Ca2+ and Mg2+ concentrations) varied from 30 to 450 ppm. Assays based on growth inhibition of two bacterial strains, Escherichia coli DH5α and Vibrio fischeri, were used to determine the antibacterial activity of tetracycline’s photoproducts in these water samples. In all tested conditions, it was determined that the photoproducts retain no significant antibacterial activity; all observed growth inhibition was attributable to residual tetracycline. This suggests that tetracycline photoproducts formed under a wide range of pH and water hardness conditions will not contribute to the selection of antibiotic-resistant bacteria in environmental systems.  相似文献   
50.
Tetracycline is widely used in livestock and poultry breeding industry, which can cause serious problems to the environment. Antibiotic pollution has become an important environmental issue. This study aimed to isolate and identify a well-functioning tetracycline-degrading bacteria strain from activated sludge and to investigate its optimum degradation conditions. The strain was identified through morphological features, Gram staining, and the sequence analysis of 16S rRNA. Furthermore, the temperature, initial pH of the medium, inoculation amount, and type of metallic salt were analyzed to investigate the tetracycline degradation performance of the isolated strain. Based on the single factor test, the method of response surface analysis was adopted to optimize the degradation condition. The strain was named TTC-1 and identified as Klebsiella pneumoniae. The optimum condition for tetracycline degradation was determined as follows: temperature of 34.4 °C, pH of 7.22, and MnSO4 concentration of 0.32 g/L. Under this optimum condition, the predicted tetracycline degradation rate was 93.77%, whereas the observed value was 94.26%. The experimental results showed that the proposed model had high accuracy. TTC-1 showed a good performance in degrading tetracycline, which can provide reference for the bacteria during the biological treatment of tetracycline containing wastewater. © 2018 Science Press. All rights reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号