首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  国内免费   25篇
安全科学   2篇
环保管理   1篇
综合类   31篇
基础理论   6篇
污染及防治   7篇
评价与监测   3篇
灾害及防治   1篇
  2023年   9篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2015年   3篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1994年   2篇
  1985年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
31.
固定化厌氧微生物处理四环素废水的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
采用PVA-硼酸法固定化微生物作为两相厌氧工艺中的产甲烷相,进行了四环素废水的处理试验,并与一般UASB产甲烷相进行了比较。结果表明固定化微生物产甲烷相具有较高的污泥活性和抗冲击负荷能力,其COD去除率达65%~75%,高于一般UASB反应器,且具有较高的污泥活性和抗冲击负荷能力。   相似文献   
32.
Global environmental problems have been increasing with the growth of the world economy and have become a crucial issue. To replace fossil fuels, sustainable and eco-friendly catalysts are required for the removal of organic pollutants. In this study, nickel ferrite (NiFe2O4) was prepared using a simple wet-chemical synthesis, followed by calcination; bismuth phosphate (BiPO4) was also prepared using a hydrothermal method. Further, NiFe2O4/BiPO4 nanocomposites were prepared using a hydrothermal technique. Numerous characterization studies, such as structural, morphology, surface area, optical, photoluminescence, and photoelectrochemical investigations, were used to analyze NiFe2O4/BiPO4 nanocomposites. The morphology analysis indicated a successful decoration of BiPO4 nanorods on the surface of NiFe2O4 nanoplate. Further, the bandgap of the NiFe2O4/BiPO4 nanocomposites was modified owing to the formation of a heterostructure. The as-prepared NiFe2O4/BiPO4 nanocomposite exhibited promising properties to be used as a novel heterostructure for tetracycline (TC) and Rhodamine B (RhB) removal. The NiFe2O4/BiPO4 nanocomposite degrades TC (98%) and RhB (99%) pollutants upon solar-light irradiation within 100 and 60 min, respectively. Moreover, the trapping experiments confirmed the Z-scheme approach of the prepared nanocomposites. The efficient separation and transfer of photogenerated electron-hole pairs rendered by the heterostructure were confirmed by utilizing electrochemical impedance spectroscopy, photocurrent experiments, and photoluminescence. Mott–Schottky measurements were used determine the positions of the conduction and valence bands of the samples, and the detailed mechanism of photocatalytic degradation of toxic pollutants was projected and discussed.  相似文献   
33.
In this work, we employed waste activated sludge (WAS) as carbon source to prepare ultrahigh specific surface area (SSA) biopolymers-based carbons (BBCs) through alkali (KOH) treatment coupled to pyrolysis strategy. Before the pyrolysis process, the involvement of KOH made a great recovery of soluble biopolymers from WAS, resulting in highly-efficient catalytic pyrolysis. The Brunner-Emmett-Teller and pore volume of BBCs prepared at 800°C (BBC800) reached the maximum at 2633.89 m2·g?1 and 2.919 m3·g?1, respectively. X-ray photoelectron spectroscopy suggested that aromatic carbon in the form of C=C was the dominant fraction of C element in BBCs. The N element in BBCs were composed of pyrrolic nitrogen and pyridinic nitrogen at 700°C, while a new graphitic nitrogen appeared over 800°C. As a refractory pollutant of wastewater treatment plants, tetracycline (TC) was selected to evaluate adsorption performance of BBCs. The adsorption behavior of BBCs towards TC was conformed to the pseudo-second-order kinetic and the Langmuir models, signifying that chemisorption of monolayers was dominant in TC adsorption. The adsorption capacity of BBC800 reached the maximum at 877.19 mg·g?1 for 90 min at 298 K. Thermodynamic analysis indicated that the adsorption process was endothermic and spontaneous. Hydrogen bonding and π-π stacking interaction were mainly responsible for TC adsorption, and interfacial diffusion was the main rate-control step in adsorption process. The presence of soluble microbial products (SMPs) enhanced TC removal. This work provided a novel strategy to prepare bio-carbon with ultrahigh SSA using WAS for highly-efficient removal of organic pollutants.  相似文献   
34.
近年来工业和养殖业中铜和四环素的滥用,导致了一定的水环境污染问题。为探究铜与四环素对水生生物的毒害作用,选择斑马鱼作为受试生物,研究了铜及其与四环素的联合暴露对斑马鱼胚胎的毒性效应,并进一步探索了其可能的致毒机制。结果表明:铜在低浓度下(10%致死浓度LC10=2.5 μg?L-1,10%效应浓度EC10=0.1 μg?L-1)明显延迟了斑马鱼胚胎的孵化、卵黄囊吸收、头部、鱼鳔和体长等生长指标的发育,同时在心脏区域引起明显细胞凋亡效应。幼鱼体内总铜含量检测结果显示低浓度下铜的生物利用度相对更高。基因表达结果显示环境浓度的铜可能通过影响神经和心脏相关基因的表达引起斑马鱼胚胎的神经发育和心脏发育异常。铜和四环素的联合暴露实验结果表明二者的复合污染类型为拮抗作用,且两者相互作用可以形成络合物。综合以上结论,说明环境浓度的铜可能通过细胞凋亡、分子水平的变化等方式对水生生物的早期生长发育产生危害,如延迟生长发育、神经及心脏发育异常,另外铜可通过和四环素等环境中其他污染物的结合改变铜的生物有效性和毒性。  相似文献   
35.
In this study, a graphitic carbon nitride(g-C3N4) based ternary catalyst Cu O/Cu Fe2O4/gC3N4(CCCN) is successfully prepared thorough calcination method. After confirming the structure and composition of CCCN, the as-synthesized composites are utilized to activate persulfate(PS) for the degradation of organic contaminant. While using tetracycline hydrochloride(TC) as pollutant surrogate, the effects of initial p H, PS and catalyst ...  相似文献   
36.
Nonradical reaction driven by peroxymonosulfate (PMS) based advanced oxidation processes has drawn widespread attention in water treatment due to their inherent advantages, but the degradation behavior and mechanism of organic pollutants are still unclear. In this study, the performance, intermediates, mechanism and toxicity of tetracycline (TC) degradation were thoroughly examined in the constructed magnetic nitrogen-doped porous carbon/peroxymonosulfate (Co-N/C-PMS) system. The results showed that 85.4% of TC could be removed within 15 min when Co-N/C and PMS was simultaneously added and the degradation rate was enhanced by 3.4 and 14.7 folds compared with Co-N/C or PMS alone, respectively. Moreover, the performance of Co-N/C was superior to that of most previously reported catalysts. Many lines of evidence indicated that Co-N/C-PMS system was a singlet oxygen-dominated nonradical reaction, which was less interfered by pH and water components, and displayed high adaptability to actual water bodies. Subsequently, the degradation process was elaborated on the basis of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry. At last, the toxicity of treated TC was greatly reduced by using microalgae Coelastrella sp. as ecological indicator. This study provides a promising approach based on singlet oxygen-dominated nonradical reaction for eliminating TC in water treatment.  相似文献   
37.
The fate of trace tetracycline, tetracycline resistant bacteria (TRB) and tetracycline resistant genes (TRGs) in an improved anaerobic-anoxic-oxic (AAO) wastewater treatment plant (WWTP) was investigated in this study. Quantitative real-time polymerase chain reaction (qPCR) and conventional heterotrophic plate count method were used to measure eight tet genes (tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX) and TRB, respectively. The TRB percent of total heterotrophic bacteria (THB) is about 1.31–24.1% in WWTP influent. Tet gene abundance in the WWTP varied greatly among the gene types. The concentrations of TRGs in effluent samples ranged from 7.11 × 10−9 to 1.53 × 10−4 copies/copy 16S rRNA gene. TRB and THB, tetM and tetO, tetE and tetX, but not the others, showed a significant correlation with each other (p < 0.01). The relationships between ribosomal protection protein genes, enzymatic modification gene and corresponding concentrations of antibiotics were found to be considerably significant (R2 = 0.898, p < 0.01 for ribosomal protection protein genes and R2 = 0.872, p < 0.05 for enzymatic modification gene).  相似文献   
38.
Aquaculture farmers commonly add tetracycline to fish feed or to their ponds to prevent or treat bacterial infections in their crops. To assess the short-term effect of tetracycline (TET) and of one of its reversible epimers, 4-epitetracycline (ETC), on the function and structure of a sediment microbial community from a tropical tilapia farm, we contrasted community-level physiological profiles (CLPP) and phospholipid fatty acid profiles (PLFA) obtained from microcosms exposed for 12 days to 5, 10, 50, or 75 mg kg?1of these antibiotics. Notwithstanding that the concentration of the antibiotics during the experiment decreased between 13–100% (TET) or 16–61% (ETC), both compounds provoked opposing metabolic responses that did not revert. TET displayed a tendency to inhibit respiration at concentrations < 50 mg kg?1, whereas ETC showed the opposite effect. As revealed by the finding of the fatty acids 11:0 iso 3OH, 16:1w6c, and 18:1w6c, the sediment analyzed was predominantly colonized by Gram-negative bacteria. A marked decrease in fatty acid diversity accompanied the aforementioned metabolic responses, with TET concentrations > 50 mg kg?1leading to an enrichment of yeast and fungal biomarkers and both antibiotics at concentrations < 10 mg kg?1selecting for microorganisms with 11:0 iso 3OH. In agreement with CLPP data, differences between the PLFA profiles of control and treated microcosms were more pronounced for TET than for ETC. We conclude that high, yet field-relevant, concentrations of TET and ETC have the potential to modify the composition, and to a lesser extent, the functioning of a sediment microbial community. This study highlights the importance of considering antibiotic degradation products in ecotoxicological research.  相似文献   
39.
Photocatalytic degradation was considered as a best strategy for the removal of antibiotic drug pollutants from wastewater. The photocatalyst of ABC (Ag2CO3/BiOBr/CdS) composite synthesized by hydrothermal and precipitation method. The ABC composite used to investigate the degradation activity of tetracycline (TC) under visible light irradiation. The physicochemical characterization methods (e.g. scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), ultraviolet visible spectroscopy (UV), photoluminescence (PL) and time resolved photoluminescence (TRPL) clearly indicate that the composite has been construct successfully that enhances the widened visible light absorption, induces charge transfer and separation efficiency of electron – hole pairs. The photocatalytic activity of all samples was examined through photodegradation of tetracycline in aqueous medium. The photocatalytic degradation rate of ABC catalyst could eliminate 98.79% of TC in 70 min, which is about 1.5 times that of Ag2CO3, 1.28 times that of BiOBr and 1.1 times that of BC catalyst, respectively. The role of operation parameters like, TC concentration, catalyst dosage and initial pH on TC degradation activity were studied. Quenching experiment was demonstrated that ·OH and O2· were played a key role during the photocatalysis process that was evidently proved in electron paramagnetic resonance (EPR) experiment. In addition, the catalyst showed good activity perceived in reusability and stability test due to the synergistic effect between its components. The mechanism of degradation of TC in ABC composite was proposed based on the detailed analysis. The current study will give an efficient and recyclable photocatalyst for antibiotic aqueous pollutant removal.  相似文献   
40.
吸附——光催化氧化法处理四环素废水   总被引:8,自引:0,他引:8  
以含ZnO,TiO2等无机半导体的沸石作为吸附剂和光催化剂,采用高压汞灯为光源对四环素溶液进行了处理。通过正交实验,考察了pH,光照时间,光照面积,沸石用量、初始浓度对四环素的影响,从实际应用出发,得出影响四环素降解的各因素的最佳取值及影响显著性次序。结果表明,pH对四环素分解影响最显著。该实验结果有助于制药工业废水的光催化处理研究以及新型复合水处理剂的开发与利用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号