首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2479篇
  免费   212篇
  国内免费   185篇
安全科学   328篇
废物处理   57篇
环保管理   877篇
综合类   834篇
基础理论   305篇
污染及防治   174篇
评价与监测   229篇
社会与环境   38篇
灾害及防治   34篇
  2023年   28篇
  2022年   31篇
  2021年   54篇
  2020年   62篇
  2019年   54篇
  2018年   39篇
  2017年   70篇
  2016年   91篇
  2015年   98篇
  2014年   104篇
  2013年   142篇
  2012年   155篇
  2011年   168篇
  2010年   106篇
  2009年   168篇
  2008年   115篇
  2007年   129篇
  2006年   122篇
  2005年   135篇
  2004年   99篇
  2003年   120篇
  2002年   89篇
  2001年   82篇
  2000年   90篇
  1999年   81篇
  1998年   60篇
  1997年   46篇
  1996年   63篇
  1995年   44篇
  1994年   29篇
  1993年   22篇
  1992年   20篇
  1991年   14篇
  1990年   11篇
  1989年   15篇
  1988年   13篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有2876条查询结果,搜索用时 78 毫秒
111.
道路交通噪声预测声源简化研究   总被引:1,自引:1,他引:0  
为了分析《环境影响评价技术导则声环境》(HJ 2.4—2009)中将道路声源简化为1条位于道路中心线处的线声源与按照车道数简化为多条线声源之间的误差,针对不同宽度的道路,推导了多条线声源与1条线声源在接收点噪声影响的误差计算公式,并基于Predictor-lima预测软件预测和现场噪声衰减规律实测进行了验证。研究结果表明,对于接收点到道路边缘的距离大于道路宽度的情况,可简化为1条线声源;对于接收点到道路边缘的距离小于道路宽度的情况,应按照车道数简化为多条线声源。  相似文献   
112.
While soundscape is increasingly acknowledged within landscape planning and design discourse, there is little research that clarifies how soundscapes are actually dealt with in landscape architecture practice – partly owing to methodological insufficiencies. This paper, therefore, describes a model for evaluating soundscape treatment in landscape design proposals, focusing on three key aspects. With the dual aim of testing the model, and learning more about how soundscape is approached in practice, the paper spotlights a major design competition for a new cemetery in Sweden. The model proved fruitful and easy to apply. It showed that only limited attention was paid to soundscape in the competition as a whole, and was a useful means of pinpointing proposals where soundscape was fully considered as a design feature; one competition entry that did so is described in the paper. Discussions cover design practice, trends in the competition and model application.  相似文献   
113.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   
114.
One approach for performing uncertainty assessment in flood inundation modeling is to use an ensemble of models with different conceptualizations, parameters, and initial and boundary conditions that capture the factors contributing to uncertainty. However, the high computational expense of many hydraulic models renders their use impractical for ensemble forecasting. To address this challenge, we developed a rating curve library method for flood inundation forecasting. This method involves pre‐running a hydraulic model using multiple inflows and extracting rating curves, which prescribe a relation between streamflow and stage at various cross sections along a river reach. For a given streamflow, flood stage at each cross section is interpolated from the pre‐computed rating curve library to delineate flood inundation depths and extents at a lower computational cost. In this article, we describe the workflow for our rating curve library method and the Rating Curve based Automatic Flood Forecasting (RCAFF) software that automates this workflow. We also investigate the feasibility of using this method to transform ensemble streamflow forecasts into local, probabilistic flood inundation delineations for the Onion and Shoal Creeks in Austin, Texas. While our results show water surface elevations from RCAFF are comparable to those from the hydraulic models, the ensemble streamflow forecasts used as inputs to RCAFF are the largest source of uncertainty in predicting observed floods.  相似文献   
115.
Historically, many watershed studies have been based on using the streamflow flux, typically from a single gauge at the basin's outlet, to support calibration. In this setting, there is great potential for equifinality of parameters during the optimization process, especially for parameters that are not directly related to streamflow. Therefore, some of the optimal parameter values achieved during the autocalibration process may be physically unrealistic. In recent decades a vast array of data from land surface models and remote sensing platforms can help to constrain hydrologic fluxes such as evapotranspiration (ET). While the spatial resolution of these ancillary datasets varies, the continuous spatial coverage of these gridded datasets provides flux measurements across the entire basin, in stark contrast to point‐based streamflow data. This study uses Global Land Evaporation: the Amsterdam Model data to constrain Soil and Water Assessment Tool parameter values associated with ET to a more physically realistic range. The study area is the Little Washita River Experimental Watershed, in southern Oklahoma. Traditional objective metrics such as the Nash‐Sutcliffe coefficients record no performance improvement after application of this method. However, there is a dramatic increase in the number of days with receding flow where simulations match observed streamflow.  相似文献   
116.
For more than 30 years, multiple research groups have worked on the automation of hazard and operability (HAZOP) studies, or more specifically on the hazard identification process. So far, very few of these approaches have been used in the chemical process industry. Automatic hazard identification is a knowledge-intensive process that demands high standards with regard to the way in which knowledge is stored and made available. There are various suitable approaches to the qualitative modeling of processes and plants, which are the foundation for reasoning systems that are used for the identification of hazards. Additionally, there are quantitative methods that are based on process simulations and can be used to identify potential hazards. The investigation of the state of research demonstrates that there are sophisticated technologies for automated systems that include powerful reasoning techniques. The benefits and shortcomings of existing technologies are discussed with regard to their industrial applicability. Often, the quality of the necessary specific and generic knowledge is not sufficient to detect potential hazardous events and operational malfunctions. Computer-aided HAZOP systems should be integrated with computer-aided design- or process simulation software using common data models based on the digital representation of the process plant. In order to be used by HAZOP practitioners automated systems need to be comprehensive, serve as specialized decision support systems, and be tested and evaluated using round robin tests.  相似文献   
117.
Subsistence hunting presents a conservation challenge by which biodiversity preservation must be balanced with safeguarding of human livelihoods. Globally, subsistence hunting threatens primate populations, including Madagascar's endemic lemurs. We used population viability analysis to assess the sustainability of lemur hunting in Makira Natural Park, Madagascar. We identified trends in seasonal hunting of 11 Makira lemur species from household interview data, estimated local lemur densities in populations adjacent to focal villages via transect surveys, and quantified extinction vulnerability for these populations based on species-specific demographic parameters and empirically derived hunting rates. We compared stage-based Lefkovitch with periodic Leslie matrices to evaluate the impact of regional dispersal on persistence trajectories and explored the consequences of perturbations to the timing of peak hunting relative to the lemur birth pulse, under assumptions of density-dependent reproductive compensation. Lemur hunting peaked during the fruit-abundant wet season (March–June). Estimated local lemur densities were roughly inverse to body size across our study area. Life-history modeling indicated that hunting most severely threatened the species with the largest bodies (i.e., Hapalemur occidentalis, Avahi laniger, Daubentonia madagascariensis, and Indri indi), characterized by late-age reproductive onsets and long interbirth intervals. In model simulations, lemur dispersal within a regional metapopulation buffered extinction threats when a majority of local sites supported growth rates above the replacement level but drove regional extirpations when most local sites were overharvested. Hunt simulations were most detrimental when timed to overlap lemur births (a reality for D. madagascariensis and I. indri). In sum, Makira lemurs were overharvested. Regional extirpations, which may contribute to broad-scale extinctions, will be likely if current hunting rates persist. Cessation of anthropogenic lemur harvest is a conservation priority, and development programs are needed to help communities switch from wildlife consumption to domestic protein alternatives.  相似文献   
118.
Payments to compensate landowners for carrying out costly land‐use measures that benefit endangered biodiversity have become an important policy instrument. When designing such payments, it is important to take into account that spatially connected habitats are more valuable for many species than isolated ones. One way to incentivize provision of connected habitats is to offer landowners an agglomeration bonus, that is, a bonus on top of payments they are receiving to conserve land if the land is spatially connected. Researchers have compared the cost‐effectiveness of the agglomeration bonus with 2 alternatives: an all‐or‐nothing, agglomeration payment, where landowners receive a payment only if the conserved land parcels have a certain level of spatial connectivity, and a spatially homogeneous payment, where landowners receive a payment for conserved land parcels irrespective of their location. Their results show the agglomeration bonus is rarely the most cost‐effective option, and when it is, it is only slightly better than one of the alternatives. This suggests that the agglomeration bonus should not be given priority as a policy design option. However, this finding is based on consideration of only 1 species. We examined whether the same applied to 2 species, one for which the homogeneous payment is best and the other for which the agglomeration payment is most cost‐effective. We modified a published conceptual model so that we were able to assess the cost‐effectiveness of payment schemes for 2 species and applied it to a grassland bird and a grassland butterfly in Germany that require the same habitat but have different spatial‐connectivity needs. When conserving both species, the agglomeration bonus was more cost‐effective than the agglomeration and the homogeneous payment; thus, we showed that as a policy the agglomeration bonus is a useful conservation‐payment option.  相似文献   
119.
Estimating the effect of agricultural conservation practices on reducing nutrient loss using observational data can be confounded by factors such as differing crop types and management practices. As we may not have the full knowledge of these confounding factors, conventional statistical meta‐analysis methods can be misleading. We discuss the use of two statistical causal analysis methods for quantifying the effects of water and soil conservation practices in reducing P loss from agricultural fields. With the propensity score method, a subset of data was used to form a treatment group and a control group with similar distributions of confounding factors. With the multilevel modeling method, data were stratified based on important confounding factors, and the conservation practice effect was evaluated for each stratum. Both methods resulted in similar estimates of the conservation practice effect (total P load reduction avg. ~70%). In addition, both methods show evidence of conservation practices reducing the incremental increase in total P export per unit increase in fertilizer application. These results are presented as examples of the types of outcomes provided by statistical causal analyses, not to provide definitive estimates of P loss reduction. The enhanced meta‐analysis methods presented within are applicable for improved assessment of agricultural practices and their effects and can be used for providing realistic parameter values for watershed‐scale modeling.  相似文献   
120.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号