首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   53篇
  国内免费   75篇
安全科学   12篇
废物处理   4篇
环保管理   24篇
综合类   193篇
基础理论   31篇
污染及防治   26篇
评价与监测   88篇
社会与环境   38篇
灾害及防治   12篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   20篇
  2020年   18篇
  2019年   15篇
  2018年   15篇
  2017年   15篇
  2016年   26篇
  2015年   25篇
  2014年   21篇
  2013年   18篇
  2012年   18篇
  2011年   21篇
  2010年   16篇
  2009年   22篇
  2008年   30篇
  2007年   19篇
  2006年   18篇
  2005年   16篇
  2004年   12篇
  2003年   14篇
  2002年   13篇
  2001年   8篇
  2000年   10篇
  1999年   8篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有428条查询结果,搜索用时 145 毫秒
21.
对2014年、2015年两年春节期间南京市空气质量监测数据进行分析,探讨禁止燃放烟花爆竹规定实施前后空气质量变化情况.结果表明:烟花爆竹燃放使得空气质量达重污染,且空气中的PM2.5质量浓度迅速上升,出现局地短时间峰值,同时会使PM2.5中的水溶性离子组分含量也急剧升高,其中与烟花爆竹主要成分基本一致的SO2-4、Cl-、K+和Mg2+攀升迅速;禁止燃放烟花爆竹对空气质量改善有显著作用,2015年春节禁燃后,南京市空气质量均达标率同比上升4成以上,春节期间PM2.5平均质量浓度,同比改善56%;PM2.5中的水溶性离子组分也基本处于正常监测范围,较少出现波动.  相似文献   
22.
南京市湿地水质对城市化影响强度的响应研究   总被引:3,自引:2,他引:1  
选取28个受城市化影响程度不同的典型湿地,对其水质进行连续监测.另一方面利用GIS技术及景观生态学原理对城市湿地所在集水区不透水类型及林地类型进行景观分析,并构建城市化影响指数(UEI),进一步对区域城市化水平与湿地水质进行相关分析.结果表明:①南京仙林新市区湿地水质季节性变化表现为夏季水质较差,冬季水质相对较好,春、秋季节差别不大.②湿地水质与城市化水平有着明显的相关关系,城市化水平等级越高,湿地水质越差,其中高等城市化水平(HU)湿地TP、TN、NH4+-N、Chla等富营养化指标质量浓度分别达到0.27、1.07、0.15、17.94 mg.L-1,而低等城市化水平(LW)湿地其质量浓度则分别为0.12、0.56、0.12、4.85 mg.L-1.③城市化影响指数与湿地水质存在着阈值关系,整体来看,当UEI值超过2.2时,湿地水质恶化速度加快.  相似文献   
23.
为了研究南京市区与郊区气溶胶中多环芳烃(PAHs)污染状况和分布特征,利用气-质联用仪(GC-MS)分析了2010年1月1~10日日间和夜间分别在南京大学和南京信息工程大学采集的气溶胶样品,得到南京市区与郊区17种PAHs浓度,总浓度分别为41.36~220.35 ng.m-3和45.10~200.86 ng.m-3,其中约66%~67%分布于细粒子(Dp≤2.1μm)中.研究发现,南京市区和郊区气溶胶中PAH总浓度均处于较高的水平;但两者昼夜变化趋势不同,即市区PAH总浓度日间高于夜间,郊区PAH总浓度日间低于夜间.主导风向的改变和高压天气系统对PAH浓度变化影响较大;在市区其影响主要表现在细粒子部分,而郊区主要表现在粗粒子部分.市区和郊区不同环数的PAHs粒径分布不同;2~3环PAHs,郊区含量高于市区;而4~6环PAHs,市区含量高于郊区.高环数(4~6环)PAHs在粗模态出现较大浓度峰可能是由于南京地区粗模态气溶胶中碳含量较高.市区和郊区相似的特征比值说明两者的PAHs具有相同污染来源,主要为生物质及煤的燃烧和汽车尾气,表明南京市区PAHs受到郊区工业源排放影响较大.  相似文献   
24.
占地面积大、交通便利的地铁停车场上盖物业开发越来越受到青睐。以南京市江宁大学城停车场上盖物业为例,对受到地铁停车场、高架地铁和公路3方面噪声源影响的上盖物业进行了声环境影响预测分析。得出:该项目受到停车场噪声影响的最大声级达61.9dB(A),受到高架地铁噪声和公路噪声叠加影响的等效声级昼间可达67.7dB(A),夜间可达63.6dB(A)。在确保落实相应防护措施的前提下,地铁停车场上盖物业在声环境上总体上具有可行性。  相似文献   
25.
南京冬季雾霾过程中气溶胶粒子的微物理特征   总被引:26,自引:7,他引:19  
2007年冬季南京雾外场试验获得了雾霾转换过程的大气气溶胶和雾滴尺度谱分布同步观测资料,根据能见度和含水量将雾霾过程划分为雾、轻雾、湿霾、霾4个不同阶段,进而分析了不同阶段粗、细气溶胶粒子的微物理特征.结果表明,4个阶段的主要发生顺序为霾←→轻雾—→湿霾—→雾—→湿霾—→轻雾←→霾,雾前湿霾阶段持续时间长于雾后.尺度2μm的粗粒子数浓度、表面积浓度和体积浓度在雾阶段均显著大于其他3个阶段,其中霾阶段浓度最低.雾滴表面积浓度和体积浓度尺度谱分布为双峰或多峰型,而轻雾、湿霾和霾阶段粗粒子谱均为单峰型.尺度0.010μm的细粒子表面积浓度谱形在雾和湿霾阶段、轻雾和霾阶段分别相似,雾和湿霾阶段数浓度占优势的尺度范围分别为0.04~0.13μm和0.02~0.14μm,轻雾及霾阶段数浓度优势粒子尺度范围均为0.02~0.06μm.从霾、轻雾、湿霾到雾的转换过程中,以0.060~0.090μm为界,小粒子减少,大粒子增多.雾霾演变过程中气溶胶粒子数浓度与均方根直径呈显著负相关关系,雾阶段气溶胶粒子数浓度最低、平均尺度最大.  相似文献   
26.
春节期间南京市大气气溶胶粒径分布特征   总被引:15,自引:4,他引:11  
为研究春节期间燃放烟花爆竹对城市大气气溶胶数浓度粒径谱分布的影响,对2012年1月19~31日南京大气气溶胶数浓度、污染气体浓度和质量浓度进行了观测分析.结果表明,烟花爆竹的燃放期间10~20 nm气溶胶浓度远低于非燃放期,50~100、100~200和200~500 nm数浓度有较大增加,20~50 nm和0.5~10μm气溶胶数浓度变化不大.烟花爆竹的燃放对气溶胶数浓度谱影响较大,非燃放期数浓度谱为双峰型分布;在燃放期数浓度谱为单峰性分布,且峰值向大粒径段偏移.烟花爆竹燃放期间质量浓度谱为双峰型分布,对细粒子的质量浓度影响较大,燃放期间PM2.5/PM10和PM1.0/PM10的值可升高10%.烟花爆竹的大量燃放对1.0~2.1μm粒径段气溶胶密度影响最大,对其他粒径段密度影响较小.  相似文献   
27.
对南京典型工业企业雨排及清下水排口水质排放情况进行监测分析,摸清排放现状,分析成因.并提出对策和建议,要求环境管理部门加强对工业企业雨污分流的监管,各地方可以根据实际情况制定相应的地方标准.以南京为例,加大对工业企业雨排和清下水排口的监测管理力度,把工业企业雨排和清下水排口纳入正常的监测计划,对出现超标以及雨排或清下水排口排放量超过40吨/天的工业企业应安装污染源在线监控系统.最终倒逼企业加强环境管理,减少对外环境的影响.  相似文献   
28.
南京雾霾天气原因分析及应对措施研究   总被引:1,自引:0,他引:1  
近年来雾霾天气开始成为一种重要的城市气象灾害,城市雾霾的形成有多方面的原因,对雾霾的治理也有多方面的举措。2013年12月江苏地区出现的雾霾事件是现阶段人们关注的焦点。本文通过对南京此次雾霾事件的回顾,从雾霾溯源、南京的应对及评述两个方面入手。对人们关注的这一热议话题进行探讨,总结出应对雾霾的一些经验和有力举措,以提供应对城市雾霾事件的参考。  相似文献   
29.
在新区域主义的理论视角下,对南京都市圈的新区域实体和区域管治进行研究,指出南京都市圈是新区域主义在我国的一种表现形式。研究表明:①南京都市圈建设是从政府到管治过程,因为在决策中引入了非政府部门和私营部门的参与者;②南京都市圈建设也涉及到区域身份与发展愿景的构建,这是区域协调的起点;③在旅游和引资促销,以及交通网络建设上,南京都市圈内的城市合作不断加强。此外,南京都市圈的新区域主义不同于西方的市场主导的新区域主义。南京都市圈的新区域主义是由政府主导的,并有企业和非政府机构参与的新区域主义。研究指出,南京都市圈是在既有区域制度和政治地理上出现的新管治尺度,是一种新的区域管治模式。南京都市圈建设的有益经验将为和谐规划提供一些启迪。  相似文献   
30.
南京市污水处理厂污泥处理处置现状   总被引:1,自引:0,他引:1  
调查了南京市污水处理厂污泥产生量、成分、达标状况以及污泥处置方式,指出了污泥处置中存在的问题。提出依据国家相应的标准和法律法规,建立和完善污泥处理处置产业政策,大力发展相关技术和工艺等建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号