首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   15篇
  国内免费   34篇
安全科学   23篇
废物处理   1篇
环保管理   137篇
综合类   72篇
基础理论   12篇
污染及防治   9篇
评价与监测   4篇
社会与环境   16篇
灾害及防治   12篇
  2023年   4篇
  2022年   10篇
  2021年   13篇
  2020年   7篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2016年   8篇
  2015年   6篇
  2014年   5篇
  2013年   9篇
  2012年   16篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   14篇
  2007年   15篇
  2006年   12篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   12篇
  2001年   12篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有286条查询结果,搜索用时 328 毫秒
71.
应用AFS-9530型双道原子荧光光谱法研究土壤样品中砷和汞的联合测定技术,将土壤样品置于(1+1)王水的微波消解体系中进行消解,加入1m L 5%的重铬酸钾溶液保护汞,加入5m L(5%硫脲+5%抗坏血酸)混合液将五价砷还原为三价,以硼氢化钾为还原剂在5%盐酸介质中测定砷和汞,最低检出限为砷0.55μg/L,汞0.30μg/L,回收率砷在93.5%—105.8%之间,汞在85.5%—104.9%之间,满足准确度要求。  相似文献   
72.
ABSTRACT Geologic, engineering, and biological investigations of six Pennsylvania coldwater streams were undertaken to determine the impact of channel modifications instituted both prior to and following Hurricane Agnes. The primary focus of the study was on the ecological changes brought about by stream channelization. No long-term deleterious effects on water quality, attached algae, benthic fauna, or forage fish populations were found. Trout, however, were found to be greater in numbers and weight in natural than in channelized stream reaches. Lack of suitable physical habitat appears to be the primary cause of reduced trout populations in stream reaches which have been channelized.  相似文献   
73.
ABSTRACT: The Conservation Areas in South Florida have been considered as one of the major water storage areas to provide a water supply for the Everglades National Park and Lower East Coast (LEC). Due to the increasing water demands of the area, additional backpumping of the surplus runoff from the LEC area into the Conservation Areas has been considered as one of several alternative plans. The Receiving Water Quantity (EPA, 1971) model has been adapted and modified to be applicable in the Conservation Areas to investigate the possible impact of additional inflow under various backpumping cases. The modification of the model included Manning's roughness coefficient, depth of flow, width of hypothetical channels through marsh areas, rainfall input, seepage rate, etc. The use of the Monte Carlo technique for area computations was found to be easy and time saving both in area and weighting rainfall input to each node. Comparison of results generated by this modified model with the recorded values in Conservation Areas 1 and 2A indicated that the model not only can be a very good evaluation tool to simulate the hydraulic regime of the Conservation Areas system but also a proper tool for investigating the impact of additional inflow resulting from the backpumping related to the water use planning and management.  相似文献   
74.
ABSTRACT: The St. Johns River basin is the largest watershed entirely within the State of Florida, and is one of the few northward flowing rivers in the United States. The river basin contains 11,431 square miles, of which 9,430 square miles are drained by the river and its tributaries. The remainder drains into the Atlantic Ocean or the Intracoastal Waterway. Its largest sub-basin is the Oklawaha River basin, which has a drainage area of 2,870 square miles. Ground elevations range from sea level to 200 feet above mean sea level in the main river basin and as high as 300 feet above mean sea level in the Oklawaha River basin. This study was designed to investigate the surface water resources of the St. Johns River and the existing consumptive uses. The analysis revealed that the river is an extremely large and valuable resource which has been under-utilized and could play a much stronger role in serving the needs of the people in the basin.  相似文献   
75.
Stream tributaries in the Des Moines River basin have been classified according to the glacial terrain through which they flow. Three stream types were categorized as follows: (1) streams that flow entirely on Wisconsin drift, (2) streams that flow entirely on Kansan drift, and (3) streams that have their headwaters located on new drift but have their lower reaches flowing on older drift. Selected channel and valley characteristics were measured and used to verify the stream type classification. Five variables were chosen for use in a multiple linear discriminatory analysis, which is a statistical technique developed for the purpose of classifying observations into one of several categories which have been predetermined. The streams in each group were verified with the exception of three anomalies based on the probability associated with the largest linear discriminant function. The rationale for the three anomalous streams is not easily determined. But, they are considered to be associated with pre-glacial drainage or at least pre-Wisconsin age drainage. Otherwise, the analysis shows that the major channels and valleys in the Des Moines River basin tend to reflect the glaciated upland surface.  相似文献   
76.
ABSTRACT: An accounting procedure is developed which determines a flow regime that is capable of transporting an amount of bedload sediment necessary to ensure channel stability downstream. The method allows for sediment buildup in the channel within geomorphic threshold limits during low flow periods. During periods of high runoff, enough water is bypassed to transport the stored sediment. The procedure utilizes only those flows of sufficient magnitude to maintain channel stability over the long run (25–50+ years). An example is presented which determines the volume of water and frequency of release for channel maintenance purposes downstream from a hypothetical water diversion project. Of some 1,200,000 acre feet generated during a 59-year period, 86,500 acre feet was required for channel maintenance flows. Bypass flows were not required each year, but only during those years when average daily flow reached bankfull or greater. Such releases were made on 202 of the 411 days when average flows either equalled or exceeded bankfull discharge.  相似文献   
77.
ABSTRACT: A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the rime to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation.  相似文献   
78.
ABSTRACT: Stream channel stability is affected by peak flows rather than average annual water yield. Timber harvesting and other land management activities that contribute to soil compaction, vegetation removal, or increased drainage density can increase peak discharges and decrease the recurrence interval of bankfull discharges. Increased peak discharges can cause more frequent movement of large streambed materials, leading to more rapid stream channel change or instability. This study proposes a relationship between increased discharge and channel stability, and presents a methodology that can be used to evaluate stream channel stability thresholds on a stream reach basis. Detailed surveys of the channel cross section, water surface slope, streambed particle size distribution, and field identification of bankfull stage are used to estimate existing bankfull flow conditions. These site specific stream channel characteristics are used in bed load movement formulae to predict critical flow conditions for entrainment of coarse bed material (D84 size fraction). The “relative bed stability” index, defined as the ratio of critical flow condition to the existing condition at bankfull discharge, can predict whether increased peak discharges will exceed stream channel thresholds.  相似文献   
79.
ABSTRACT: The pebble count, a quick and simple technique for characterizing streambed materials, has long been used by geomorphologists, hydrologists, and river engineers. This paper describes how pebble counts have been used to monitor fine sediment (particles less then 6 mm in size) on the Boise National Forest. Data from two watersheds subjected to major wildfires and the failure of a dam are discussed. Following wildfires, pebble count data showed increases in streambed fines followed by improvement of the stream substrate with time as the watersheds recovered. For the dam failure, pebble count data showed an increase in fines in the stream below the failure and were used to track the distance of sediment movement downstream. Pebble counts may be best used where fine sediment on channel substrates are a concern, such as in granitic watersheds where coarse sands are a large component of bedload and land-disturbing activities introduce fine sediment into streams. Pebble counts are found to be a simple and rapid monitoring method that can be used to help determine whether or not land management activities or land disturbances are introducing fine sediment into streams.  相似文献   
80.
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号