首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   5篇
安全科学   5篇
综合类   6篇
基础理论   1篇
污染及防治   1篇
评价与监测   4篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有17条查询结果,搜索用时 13 毫秒
11.
We set up a microanalytical procedure for non-volatile ions by ion chromatography (IC) and for elements by energy-dispersive X-ray fluorescence (ED-XRF) and inductively coupled plasma optical emission spectroscopy (ICP-OES). We analysed NO3, SO4, NH4, Na, Mg, Ca, Fe, S, Zn, As, Cd, Cu, Mn, Ni, Pb, Sb, Se, Ti, and V. The use of complementary techniques yields reliable data for both trace and crustal elements, overcoming the analytical restrictions characteristic of the individual techniques. Some elements determined by two or by all three techniques can be used as data quality markers. The application of the procedure to a short PM2.5 monitoring campaign is also described, aimed to the identification of fireworks tracers.  相似文献   
12.
Variations of levels, possible source and air mass transmission were investigated for 16 USEPA priority-controlled PAHs in PM2.5 during 2018 Chinese Spring Festival (CSF) in Xiangyang City, central China which is the North-South pollutant airmass transport channel of China. Totally 37 samples were collected. Mass concentrations of Σ16PAHs for the Pre–CSF day (Pre–CSFD), during the CSF day (CSFD) and after the CSF day (Af–CSFD) are 33.78 ± 17.68 ng/m3, 22.98 ± 6.49 ng/m3, and 8.99 ± 4.44 ng/m3, respectively. High resolution samples showed that Σ16PAHs are higher in the morning (06:00–11:00) or afternoon (11:30–16:30), than those in the evening (17:00–22:00) and at night (22:30–05:30), whereas the result is reversed during the CSFD. Fireworks burning can obviously increase the mass concentration of PAHs. Air mass trajectory indicated that Xiangyang is a sink area of pollutants for northwest and southeast, and the sources of the northeast and southwest. The air mass only can be transmitted out through northeast and southwest. It is effective for improvement of air quality in Wuhan and Hunan to control fireworks emission in Henan and local areas. Fireworks burning was an important source for PAHs during CSFD, biomass, coal combustion, and traffic emission were the main sources of PAHs for Pre–CSFD and Af–CSFD periods. The health risk on the CSFD was higher than the acceptable levels, especially during the intensive fireworks burning, the risk value far exceed 1.0 × 10?4, controlling burning fireworks is required.  相似文献   
13.
结合2003—2014年南京城区春节除夕前后主要空气污染物监测数据,分析烟花爆竹集中燃放时空气污染指数及PM10、SO2、NO2质量浓度的变化趋势。指出除夕燃放烟花爆竹会引起PM10、SO2、NO2质量浓度上升,在大气扩散条件不佳的情况下影响了环境空气质量。建议在大中城市城区采取适当的禁放措施,并加快研制安全环保型的烟花爆竹替代产品。  相似文献   
14.
15.
近年来 ,烟花爆竹事故频频发生 ,通过事故概率分析 ,掌握某些规律 ,认为“事故难免论”是错误的 ,但也不提倡没有根据的“事故可以杜绝论” ,应该时刻牢记“事故有随时可能发生”这一严厉的事实 ,提倡“不怕一万 ,只防万一”安全生产的正确、谨慎、有科学根据的态度 ,并提出相应的基本安全对策  相似文献   
16.
The present study deals with the effect of fireworks on ambient air quality during Diwali Festival in Lucknow City. In this study, PM10, SO2, NO x and 10 trace metals associated with PM10 were estimated at four representative locations, during day and night times for Pre Diwali (day before Diwali) and Diwali day. On Diwali day 24 h average concentration of PM10, SO2, and NO x was found to be 753.3, 139.1, and 107.3 μg m−3, respectively, and these concentrations were found to be higher at 2.49 and 5.67 times for PM10, 1.95 and 6.59 times for SO2 and 1.79 and 2.69 for NO x , when compared with the respective concentration of Pre Diwali and normal day, respectively. On Diwali day, 24 h values for PM10, SO2, and NO x were found to be higher than prescribed limit of National Ambient Air Quality Standard (NAAQS), and exceptionally high (7.53 times) for PM10. On Diwali night (12 h) mean level of PM10, SO2 and NO x was 1,206.2, 205.4 and 149.0 μg m−3, respectively, which was 4.02, 2.82 and 2.27 times higher than their respective daytime concentrations and showed strong correlations (p < 0.01) with each other. The 24 h mean concentration of metals associated with PM10 was found to be in the order of Ca (3,169.44) > Fe (747.23) > Zn (542.62) > Cu (454.03), > Pb (307.54) > Mn (83.90) > Co (78.69) > Cr (42.10) > Ni (41.47) > Cd (34.69) in ng m−3 and all these values were found to be higher than the Pre Diwali (except Fe) and normal day. The metal concentrations on Diwali day were found to be significantly different than normal day (except Fe & Cu). The concentrations of Co, Ni, Cr and Cd on Diwali night were found to be significantly higher than daytime concentrations for Pre Diwali (control). The inter correlation of metals between Ca with Pb, Zn with Ni and Cr, Cu with Co, Co with Mn, Ni with Cd, Mn with Cd, Ni with Cd and Cr, and Cr with Cd showed significant relation either at p < 0.05 or P < 0.01 levels, which indicated that their sources were the same. The metals Cu, Co, Ni, Cr and Cd showed significant (p < 0.01) association with PM10. These results indicate that fireworks during Diwali festival affected the ambient air quality adversely due to emission and accumulation of PM10, SO2, NO x and trace metals. ITRC Communication Number 2538  相似文献   
17.
To understand the composition and major sources of aerosol particles in Lhasa City on the Tibetan Plateau (TP), individual particles were collected from 2 February to 8 March, 2013 in Tibet University. The mean concentrations of both PM2.5 and PM10 during the sampling were 25.7 ± 21.7 and 57.2 ± 46.7 μg/m3, respectively, much lower than those of other cities in East and South Asia, but higher than those in the remote region in TP like Nam Co, indicating minor urban pollution. Combining the observations with the meteorological parameters and back trajectory analysis, it was concluded that local sources controlled the pollution during the sampling. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectra (EDS) was used to study 408 particles sampled on four days. Based on the EDS analysis, a total of 8 different particle categories were classified for all 408 particles, including Si-rich, Ca-rich, soot, K-rich, Fe-rich, Pb-rich, Al-rich and other particles. The dominant elements were Si, Al and Ca, which were mainly attributed to mineral dust in the earth's crust such as feldspar and clay. Fe-, Pb-, K-, Al-rich particles and soot mainly originated from anthropogenic sources like firework combustion and biomass burning during the sampling. During the sampling, the pollution mainly came from mineral dust, while the celebration ceremony and religious ritual produced a large quantity of anthropogenic metal-bearing particles on 9 and 25 February 2013. Cement particles also had a minor influence. The data obtained in this study can be useful for developing pollution control strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号