首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  国内免费   42篇
安全科学   1篇
废物处理   1篇
综合类   54篇
基础理论   2篇
污染及防治   10篇
  2022年   1篇
  2020年   4篇
  2019年   12篇
  2018年   8篇
  2017年   7篇
  2016年   6篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
11.
于德爽  吴国栋  李津  周同  王骁静 《环境科学》2018,39(4):1688-1696
废水因含盐量高而导致其生物处理效率降低,对于如何提高高盐环境下的生物处理效率已成为目前的研究热点.采用厌氧氨氧化工艺处理高盐废水,以不同甜菜碱浓度对厌氧氨氧化脱氮效能为研究对象,探讨了甜菜碱对厌氧氨氧化脱氮效能的影响.结果表明:①投加甜菜碱对系统脱氮效能有明显的改善作用,甜菜碱浓度为0.1~0.4 mmol·L-1时,添加甜菜碱缓解了盐胁迫对厌氧氨氧化菌生长的抑制,也促进了反硝化菌的生长;甜菜碱浓度为0.4~0.5 mmol·L-1时,推测反硝化菌为优势菌群,但对总氮去除表现为促进作用.甜菜碱浓度大于0.5 mmol·L-1后,添加甜菜碱已无法缓解盐胁迫对反应器脱氮效能的抑制,最终在甜菜碱浓度0.8 mmol·L-1时对反应器产生完全抑制.②甜菜碱的添加浓度为0.3 mmol·L-1时,反应去除效能达到最佳,NH4+-N和NO2--N分别提升了16%和32%,NRR提升了26.8%.③在最后的恢复试验中,随着甜菜碱浓度的降低反应器脱氮效能得到快速恢复,NH4+-N恢复到50.6%,NO2--N平均去除率为63.7%,NRR恢复到0.65 kg·(m3·d)-1,这说明甜菜碱对反应器的影响是可逆的.  相似文献   
12.
盐度对厌氧氨氧化工艺处理含海水污水脱氮特性的影响   总被引:4,自引:0,他引:4  
采用ASBR厌氧氨氧化反应器,通过逐步提高所含海水比例,研究了厌氧氨氧化工艺处理含海水污水的脱氮特性.结果表明:经过一定时间的驯化后,厌氧氨氧化菌可以在各个海水比例下保持活性并维持较高的脱氮性能.当海水比例不高于40%时,反应器的稳定性和脱氮效能几乎不受盐度提升的影响,同时厌氧氨氧化菌的活性还会得到增强,比厌氧氨氧化活性(SAA)最高时的海水比例为30%,是10%海水比例时的121.3%;当海水比例高于40%时,反应器的脱氮效能开始下降,但经过一段时间的驯化后会得到恢复,在此期间反应器对海水盐度的响应可分为敏感期、过渡稳定期和恢复期3个阶段.在100%海水比例下,反应器的NRR可达0.341kgN/(m3·d),为10%海水比例时的73.7%,且其还有进一步提升的趋势.  相似文献   
13.
SBR工艺处理高盐度生活污水试验   总被引:2,自引:0,他引:2  
针对海水冲厕产生的高含盐生活污水,试验采用SBR工艺分别研究了不同海水盐度的污水中有机物的降解及氨氮的去除情况。结果表明,在高盐度污水的生物处理系统中,污泥的驯化是关键的一步。有机物和氨氮的去除率总体上随着盐度的增大而降低,但在海水冲厕范围内(海水比例在30%内,盐度为10500mg/L,Cl-为5700mg/L),海水盐度对有机物及氨氮的去除影响不大。  相似文献   
14.
李津  于德爽  陆婕 《环境科技》2008,21(1):54-56
采用常压蒸馏的方法对废飞机除冰液的浓缩回用进行了试验研究.试验结果表明.常压蒸馏工艺可以实现废飞机除冰液的回收再利用,通过气相色谱-质谱联用技术对馏分进行分析,得知除冰液中的有效成分2-辛酮、2-辛醇和少量乙二醇也被随水一同蒸出,通过向浓缩后的除冰液中补加这3种物质便可保证其良好的使用效果.  相似文献   
15.
温度对海洋厌氧氨氧化菌脱氮效能的影响   总被引:1,自引:1,他引:0  
周同  于德爽  李津  吴国栋  王骁静 《环境科学》2017,38(5):2044-2051
采用ASBR反应器,研究了不同温度对海洋厌氧氨氧化菌处理含海水污水脱氮效能的影响,并利用修正的Logistic模型模拟不同温度下海洋厌氧氨氧化菌的动力学特性.结果表明,在25~35℃之间,温度对反应器的脱氮效能影响不大,总氮去除率(TNRE)基本保持在(82±2)%,总氮容积负荷去除速率(TNRR)稳定在(0.62±0.01)kg·(m~3·d)~(-1);在20℃时,TNRE从起始的59%经过13d上升到79%,说明在此温度下,海洋厌氧氨氧化菌仍然具有较强的脱氮能力,反应器在较低温处理含海水污水具有较好的发挥潜能;然而当温度降到15℃和10℃时,反应器的脱氮效能受到明显的抑制,TNRE分别下降至(40±8)%和(11±4)%,TNRR也下降至(0.30±0.04)kg·(m~3·d)~(-1)和(0.08±0.03)kg·(m~3·d)~(-1).根据Arrhenius方程得到,在25~35℃时,海洋厌氧氨氧化反应的活化能为26 k J·mol~(-1),在10~25℃时,海洋厌氧氨氧化反应的活化能为76 k J·mol~(-1).此外,通过Logistic模型对海洋厌氧氨氧化脱氮进行动力学分析,得到不同温度下NRE和出水总氮浓度(ceff)的预测公式,相关系数R2在0.966 8~0.995 7之间.  相似文献   
16.
海洋厌氧氨氧化菌的富集培养及其脱氮特性   总被引:1,自引:0,他引:1  
冯莉  于德爽  李津  单晓静  杨振琳 《环境科学》2017,38(6):2435-2443
采用ASBR厌氧氨氧化反应器,通过接种胶州湾底泥,研究了海洋厌氧氨氧菌的富集培养及其脱氮特性.实验结果表明:海洋厌氧氨氧化菌的富集培养可分为4个阶段:菌体自溶期(1~15 d)、迟滞期(16~152 d)、活性提高期(153~183 d)与稳定运行期(184~192 d).与淡水厌氧氨氧化相比,其迟滞期(137 d)较长,活性提高期(30 d)较短,对基质浓度与HRT的变化更敏感,且由进出水导致的菌活性延迟时间为5 h,远长于淡水厌氧氨氧化菌,因此海洋厌氧氨氧化菌对新环境的适应能力更弱,更难富集培养.经过192 d运行,对NH_4~+-N与NO-2-N的去除率分别达到96.98%与95.66%,三氮转化比n(NH_4~+-N)∶n(NO-2-N)∶n(NO-3-N)为1∶(1.2±0.2)∶(0.22±0.06),接近理论比(1∶1.32∶0.26),NRRNH_4~+-N升至0.080 kg·(m~3·d)-1,海洋厌氧氨氧化菌活性显著提高,这标志着海洋厌氧氨氧化菌富集成功.反应器运行过程中,污泥逐渐由黑色泥状变为砖红色颗粒状,扫描电镜观察,该砖红色颗粒为表面光滑,排列紧密、有类似火山口形状的球状菌相互黏聚而成的菌团.  相似文献   
17.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   
18.
本研究以模拟城市污水和高硝酸盐废水为处理对象,在一个厌氧-缺氧-微曝气运行的SBR反应器内,将短程反硝化工艺(PD,NO_3~-→NO_2~--N)与反硝化除磷工艺(DPR)耦合,并通过联合调控进水C/N比、厌氧排水率和缺氧时间,考察了PD-DPR系统的亚硝酸盐积累特性和除磷性能.结果表明,经过140d,NO_3~-→NO_2~--N转化率(NTR)为80.1%,PO~(3-)_4-P去除率高达97.64%.在厌氧段(180 min),聚糖菌(GAOs)和聚磷菌(PAOs)对污水有机碳源进行充分利用,将其转化为内碳源;缺氧段(150 min),反硝化聚糖菌(DGAOs)和异养反硝化菌(DOHOs)分别进行内源和外源短程反硝化实现NO~-_2-N稳定积累,同时反硝化聚磷菌(DPAOs)进行高效反硝化吸磷;微曝气段(10 min),在不发生硝化反应的前提下,PAOs超量吸磷,提高了系统的除磷性能.系统出水NO~-_2-N/NH~+_4-N为1.31∶1(接近厌氧氨氧化工艺理论值1.32∶1),PO~(3-)_4-P浓度为0.30 mg·L~(-1),COD浓度为12.94 mg·L~(-1).其出水水质可满足与厌氧氨氧化(ANAMMOX)工艺耦合进行深度脱氮的需求.  相似文献   
19.
采用城市生活污水配水同时启动两组ASBR,R1接种好氧硝化污泥,R2按2∶1混合接种短程硝化和厌氧氨氧化污泥,研究2个ANAMMOX反应器启动的可行性及其差异。实验结果表明,R1和R2均可成功启动ANAMMOX,R1需130 d,R2仅需73 d;稳定期R1和R2反应器NH4+-N、NO2--N和TN去除率分别达95.30%、91.30%、76.28%和96.2%、98.3%、90.1%,且周期内NH4+-N、NO2--N和NO3--N降解规律相似;R1和R2反应器发生的主要反应为厌氧氨氧化,但同时存在反硝化作用;2组反应器稳定运行后污泥颜色、形态及微生物组成相似,经SEM观察多为球状菌。  相似文献   
20.
采用中试ASBR反应器(530 L),以逐步提高Cl~-浓度的方式考察了厌氧氨氧化菌(An AOB)处理高盐废水的脱氮特性.结果表明,采用逐步盐度驯化的方式,An AOB可适应高盐度(Cl~-浓度10 000 mg·L~(-1))环境进行高效脱氮(TN去除率高达92. 3%).其中,在Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)两个梯度内,反应器脱氮性能受到了较大影响,但随着驯化过程的持续进行可逐步恢复.修正的Boltzmann模型能较为准确地拟合An AOB受到不同盐度抑制后的活性恢复过程,相关系数R~2均在0. 96以上.得到的Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)时的恢复中间值tc分别为28. 765 d和44. 495 d,NRRmax分别为0. 145 kg·(m~3·d)~(-1)和0. 212 kg·(m~3·d)~(-1),NRRmin分别为0. 021 kg·(m~3·d)~(-1)和0. 085 kg·(m~3·d)~(-1).高盐度驯化后,厌氧氨氧化菌仍主要为Candidatus Brocadia和Candidatus Jettenia(其丰度分别是14. 76%和2. 7%),且污泥颗粒化程度和污泥密度均有不同程度的提高,污泥呈红褐色.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号