首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   10篇
安全科学   1篇
废物处理   2篇
综合类   9篇
污染及防治   4篇
  2024年   1篇
  2022年   4篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2012年   1篇
  2010年   1篇
排序方式: 共有16条查询结果,搜索用时 953 毫秒
11.
以毛竹为载体、铁钴复合盐溶液为前驱体,采用水热浸渍法制备了毛竹基Fe-Co/C复合材料,并用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FT-IR)和比表面积分析仪(BET)对样品进行了表征分析。通过批量实验研究了Fe-Co/C复合材料对阿特拉津的吸附特性。该吸附材料对水体中阿特拉津显示了良好的吸附性能。在阿特拉津初始浓度为10.0 mg/L,溶液pH为7.0,吸附剂用量为0.4 g/L,反应温度为25℃时,阿特拉津的平衡吸附量为21.89 mg/g。吸附过程符合二级动力学模型和Langmuir吸附等温式。热力学结果表明,Fe-Co/C复合材料对阿特拉津吸附是自发吸热过程。红外结果表明,氢键是Fe-Co/C复合材料对阿特拉津吸附的主要作用力,孔隙效应和л-л电子共轭作用也可能促进复合材料对阿特拉津的吸附。  相似文献   
12.
本研究采用FeCl3·6H2O、ZnCl2和环丁砜(TMS)复配形成的Fe/Zn-TMS体系脱除催化裂化(FCC)干气中的H2S,并用30%H2O2氧化再生Fe/Zn-TMS体系.同时,研究了各活性成分比例、吸收液体积浓度、吸收液pH值等对脱硫效率的影响,以及H2O2用量、吸收富液pH值对Fe2+氧化率的影响.结果表明,n(FeCl3·6H2O)∶n(ZnCl2)∶n(TMS)为0.45∶0.55∶1,吸收液pH为0.75,体积浓度(W)为50%的条件下能长时间高效脱硫,最高脱硫率达99.9%;在n(Fe2+)∶n(H2O2)为2∶1,吸收富液pH为0.65的条件下,Fe2+氧化率达96.7%.体系可循环使用3次,且能耗低、操作简单.  相似文献   
13.
采用浸取—抽滤分离—减压蒸发—结晶的方法处理三烯丙基异氰脲酸酯(TAIC)合成废渣,回收其中的氯化钠。通过单因素实验和正交实验探讨了液固比、浸取温度、搅拌时间对氯化钠回收率的影响。实验结果表明,在浸取温度为30℃、搅拌时间为30 min、液固比为15的最佳工艺条件下,氯化钠回收率为81.53%。回收氯化钠产品符合GB/T 5462—2003《工业盐》精制工业盐一级标准。采用本工艺每处理1 t TAIC合成废渣可节约费用3 064元,经济效益显著。  相似文献   
14.
利用两套相同实验室规模的生物滴滤器(Biotrickling filters,BTFs)(BTF1对照组和BTF2添加表面活性剂SDS)进行表面活性剂SDS强化正己烷生物降解实验,对比分析了正己烷在3种表面活性剂SDS、Tween20和Triton X-100中的分配系数(K),并在正己烷进口负荷为72 g·m-3·h-1的条件下探讨了SDS添加量对生物滴滤器性能和不同填料层生物膜分泌物组成的影响.结果表明,正己烷在3种表面活性剂中的分配系数要远低于其在水中的分配系数,且在SDS中的分配系数最低.由于SDS的添加能促进正己烷在水中的溶解度,SDS浓度在158.6mg·L~(-1)时,正己烷的去除率从50%(BTF1)增加到70%(BTF2),相应的去除能力达到50.4 g·m-3·h-1.但作为碳源,高浓度SDS与正己烷之间存在竞争作用,当SDS浓度为475.8 mg·L~(-1)和793.0 mg·L~(-1)时,BTF2对正己烷的去除性能低于BTF1的.BTF1第2层填料上生物膜分泌的蛋白质和多糖含量要高于其它几层填料,而当BTF2中SDS浓度在158.6 mg·L~(-1)时,第2层填料上生物膜分泌的蛋白质含量和多糖均高于BTF1中第2层填料.  相似文献   
15.
管式生物过滤器去除乙苯废气   总被引:1,自引:0,他引:1  
生物过滤由于其良好的成本效益和环境友好性已经成为控制挥发性有机化合物(VOCs)含量和气味气体排放的常规技术。营养物质的均匀分布、生物膜和介质床内的气体流是成就一个性能优良的生物过滤器至关重要的因素。而由本实验室开发的管式生物过滤器(TBFs)已被证明具备此优势。本实验的管式生物过滤器以聚氨酯海绵作为填料,研究在不同有机负荷、气体停留时间(EBCT)、进气量和表面活性剂等条件下乙苯废气的去除效率(RE)。实验同时记录了管式生物过滤器启动阶段的表现。初期使附着在填料上的微生物暴露在浓度为40 mg/m3的乙苯废气中40 d,此时的气体停留时间为15 s,使微生物慢慢适应并逐步降解乙苯废气;然后连续地控制管式生物过滤器的入口乙苯浓度为40、80、120和160 mg/m3,以使有机负荷逐步升高。结果表明,乙苯去除效率随着有机负荷的增大而逐步减小。当气体停留时间从15 s增加到30 s和60 s,而有机负荷控制在38.60 g/(m3·h)时,乙苯废气去除效率略微增加。此外,随着进气量的增大乙苯废气的最大平均去除效率有所下降而此时的降解容量增大,这个过程中乙苯进气浓度保持不变。结果还表明,在营养液中加入聚乙二醇辛基苯基醚这种表面活性剂可以提高乙苯废气的去除效率。  相似文献   
16.
前置反硝化生物滤池工艺具有良好的脱氮性能,其中回流比是影响其处理效果的一个重要因素.试验考察了回流比分别为50%、100%、200%、300%的条件下该工艺对COD、NH4+-N、TN的去除效果.研究表明,在回流比从50%提高至300%的过程中,该工艺对污染物的去除效果以200%为界呈先上升后下降的趋势,但对去除TN的影响较为显著,回流比为200%时,对应COD、NH4+-N和TN的平均去除率分别为92.67%、90.50%和80.50%.在保持回流比100%的条件下,随水力负荷从1.52m.h-1增加到2.82m.h-1的过程中,前置反硝化生物滤池工艺对污染物的去除效果以2.08m.h-1为界呈先上升后下降的趋势,水力负荷为2.08m.h-1时,对COD、NH4+-N和TN的平均去除率分别为91.72%、90.29%和74.45%.COD、NH4+-N和TN主要在BAF(DN)缺氧环境内得到去除,平均去除率分别为78.48%、68.02%和58.21%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号