首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3168篇
  免费   70篇
  国内免费   905篇
安全科学   71篇
废物处理   13篇
环保管理   123篇
综合类   3348篇
基础理论   325篇
污染及防治   92篇
评价与监测   47篇
社会与环境   60篇
灾害及防治   64篇
  2023年   22篇
  2022年   35篇
  2021年   23篇
  2020年   37篇
  2019年   36篇
  2018年   39篇
  2017年   60篇
  2016年   46篇
  2015年   103篇
  2014年   47篇
  2013年   44篇
  2012年   53篇
  2011年   47篇
  2010年   49篇
  2009年   44篇
  2008年   42篇
  2007年   61篇
  2006年   47篇
  2005年   111篇
  2004年   87篇
  2003年   123篇
  2002年   99篇
  2001年   112篇
  2000年   75篇
  1999年   43篇
  1998年   30篇
  1996年   27篇
  1995年   69篇
  1994年   38篇
  1993年   84篇
  1992年   75篇
  1991年   100篇
  1990年   115篇
  1989年   86篇
  1988年   187篇
  1987年   237篇
  1986年   125篇
  1985年   233篇
  1984年   218篇
  1983年   192篇
  1982年   162篇
  1981年   142篇
  1980年   127篇
  1979年   73篇
  1978年   80篇
  1977年   34篇
  1976年   62篇
  1975年   48篇
  1974年   69篇
  1973年   20篇
排序方式: 共有4143条查询结果,搜索用时 25 毫秒
101.
Composting is attractive and inexpensive method for treatment and biomass disposal of water hyacinth. However, the major disadvantage of water hyacinth composting is the high content of heavy metals in the final compost. Addition of lime sludge significantly reduced most bioavailable fractions (exchangeable and carbonate) of heavy metals. Studies were carried on composting of water hyacinth (Eichhornia crassipes) with cattle manure and sawdust (6:3:1 ratio) and effects of addition of lime (1%, 2% and 3%) on heavy metal speciation were evaluated during 30 days of composting period. The Tessier sequential extraction method was employed to investigate the changes in speciation of heavy metals such as Zinc (Zn), Copper (Cu), Manganese (Mn), Iron (Fe), Lead (Pb), Nickel (Ni), Cadmium (Cd) and Chromium (Cr) during water hyacinth composting. Effects of physicochemical parameters such as temperature, pH and organic matter on speciation of heavy metals were also studied during the process. Results showed that, the total metal content was increased during the composting process. The higher reduction in bioavailability factor (BF) of Cu, Fe, Ni, Cd and Cr was observed in lime 2 treatment about 62.1%, 64.4%, 71.9%, 62.1% and 58.9% respectively; however higher reduction in BF of Zn and Pb was observed in lime 1 treatment during the composting process. Reducible and oxidizable fractions of Ni, Pb and Cd were not observed during the process. Addition of lime was very effective for reduction of bioavailability of heavy metals during composting of water hyacinth with cattle manure and sawdust.  相似文献   
102.
UV photolysis and UV based advanced oxidation processes (AOPs) are gaining more and more attention for drinking water treatment. Quantum yield (ø) and molar absorption coefficient (ε) are the two critical parameters measuring the effectiveness of photolysis of a compound. The product of the two was proposed as a fundamental measure of a constituent’s amenability to transformation by photolysis. It was shown that this product, named the photolysis coefficient, k p , can be determined using standard bench tests and captures the properties that govern a constituent’s transformation when exposed to light. The development showed the photolysis coefficient to be equally useful for microbiological, inorganic and organic constituents. Values of k p calculated by the authors based on quantum yield and molar absorption coefficient data from the literature were summarized. Photolysis coefficients among microorganisms ranged from 8500 to more than 600000 and are far higher than for inorganic and organic compounds, which varied over a range of approximately 10 to 1000 and are much less sensitive to UV photolysis than the microorganisms.  相似文献   
103.
The successful operation of any type of hydrogen-producing bioreactor depends on the performance of the microorganisms present in the system. Both substrate and partial gas pressures are crucial factors affecting dark fermentation metabolic pathways. The main objective of this study was to evaluate the impact of both factors on hydrogen production using anaerobic granular sludge as inoculum and, secondly, to study the metabolic shifts of an anaerobic community subjected to low partial gas pressures. With this goal in mind, seven different wastewater (four synthetic media, two industrial wastewater, and one domestic effluent) and the effect of applying vacuum on the systems were analyzed. The application of vacuum promoted an increase in the diversity of hydrogenproducing bacteria, such as Clostridium, and promoted the dominance of acetoclastic- over hydrogenotrophic methanogens. The application of different media promoted a wide variety of metabolic pathways. Nevertheless, reduction of the hydrogen partial pressure by application of vacuum lead to further oxidation of reaction intermediates irrespective of the medium used, which resulted in higher hydrogen and methane production, and improved the COD removal. Interestingly, vacuum greatly promoted biogenic hydrogen production from a real wastewater, which opens possibilities for future application of dark fermentation systems to enhance biohydrogen yields.  相似文献   
104.
Incorporating the missing heterogeneous oxidation of S(IV) by NO2 into the WRF-Chem model. Sulfate production is not sensitive to increase in SO2 emission. The newly added reaction reproduces sulfate concentrations well during winter haze. We implemented the online coupled WRF-Chem model to reproduce the 2013 January haze event in North China, and evaluated simulated meteorological and chemical fields using multiple observations. The comparisons suggest that temperature and relative humidity (RH) were simulated well (mean biases are -0.2K and 2.7%, respectively), but wind speeds were overestimated (mean bias is 0.5 m?s−1). At the Beijing station, sulfur dioxide (SO2) concentrations were overpredicted and sulfate concentrations were largely underpredicted, which may result from uncertainties in SO2 emissions and missing heterogeneous oxidation in current model. We conducted three parallel experiments to examine the impacts of doubling SO2 emissions and incorporating heterogeneous oxidation of dissolved SO2 by nitrogen dioxide (NO2) on sulfate formation during winter haze. The results suggest that doubling SO2 emissions do not significantly affect sulfate concentrations, but adding heterogeneous oxidation of dissolved SO2 by NO2 substantially improve simulations of sulfate and other inorganic aerosols. Although the enhanced SO2 to sulfate conversion in the HetS (heterogeneous oxidation by NO2) case reduces SO2 concentrations, it is still largely overestimated by the model, indicating the overestimations of SO2 concentrations in the North China Plain (NCP) are mostly due to errors in SO2 emission inventory.  相似文献   
105.
Selective catalytic reduction (SCR) of NOx with NH3 is an effective technique to remove NOx from stationary sources, such as coal-fired power plant and industrial boilers. Some of elements in the fly ash deactivate the catalyst due to strong chemisorptions on the active sites. The poisons may act by simply blocking active sites or alter the adsorption behaviors of reactants and products by an electronic interaction. This review is mainly focused on the chemical poisoning on V2O5-based catalysts, environmental-benign catalysts and low temperature catalysts. Several common poisons including alkali/alkaline earth metals, SO2 and heavy metals etc. are referred and their poisoning mechanisms on catalysts are discussed. The regeneration methods of poisoned catalysts and the development of poison-resistance catalysts are also compared and analyzed. Finally, future research directions in developing poisoning resistance catalysts and facile efficient regeneration methods for SCR catalysts are proposed.  相似文献   
106.
5R (Recover, Reduce, Recycle, Resource and Reuse) approaches to manage urban water. 5R harvests storm water, gray water and black water in several forms. 5R offers promise for moving solutions for urban water scarcity in practice. Demand for water is expanding with increases in population, particularly in urban areas in developing countries. Additionally, urban water system needs a novel perspective for upgradation with urbanization. This perspective presents a novel 5R approach for managing urban water resources: Recover (storm water), Reduce (toilet flushing water), Recycle (gray water), Resource (black water), and Reuse (advanced-treated wastewater). The 5R generation incorporates the latest ideas for harvesting storm water, gray water, and black water in its several forms. This paper has briefly demonstrated each R of 5R generation for water treatment and reuse. China has the chance to upgrade its urban water systems according to 5R principles. Already, a demonstration project of 5R generation has been installed in Qingdao International Horticultural Exposition, and Dalian International Convention Center (China) has applied 5R, achieving over 70% water saving. The 5R offers promise for moving solutions for urban water scarcity from “hoped for in the future” to “realistic today”.  相似文献   
107.
• Smart wetland was designed to treat wastewater according to zero waste principle. • The system included a dynamic roughing filter, Cyperus papyrus (L.) and zeolite. • It removed 98.8 and 99.8% of chemical and bacterial pollutants in 3 days. • The effluent reused to irrigate a landscape and the sludge recycled as fertilizer. • The plant biomass is a profitable resource for antibacterial and antioxidants. The present investigation demonstrates the synergistic action of using a sedimentation unit together with Cyperus papyrus (L.) wetland enriched with zeolite mineral in one-year round experiment for treating wastewater. The system was designed to support a horizontal surface flow pattern and showed satisfactory removal efficiencies for both physicochemical and bacteriological contaminants within 3 days of residence time. The removal efficiencies ranged between 76.3% and 98.8% for total suspended solids, turbidity, iron, biological oxygen demand, and ammonia. The bacterial indicators (total and fecal coliforms, as well as fecal streptococci) and the potential pathogens (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) showed removal efficiencies ranged between 96.9% and 99.8%. We expect the system to offer a smart management for every component according to zero waste principle. The treated effluent was reused to irrigate the landscape of pilot area, and the excess sludge was recycled as fertilizer and soil conditioner. The zeolite mineral did not require regeneration for almost 36 weeks of operation, and enhanced the density of shoots (14.11%) and the height of shoots (15.88%). The harvested plant biomass could be a profitable resource for potent antibacterial and antioxidant bioactive compounds. This could certainly offset part of the operation and maintenance costs and optimize the system implementation feasibility. Although the experiment was designed under local conditions, its results could provide insights to upgrade and optimize the performance of other analogous large-scale constructed wetlands.  相似文献   
108.
•Bacterially-mediated coupled N and Fe processes examined in incubation experiments. •NO3 reduction was considerably inhibited as initial Fe/N ratio increased. •The maximum production of N2 occurred at an initial Fe/N molar ratio of 6. •Fe minerals produced at Fe/N ratios of 1–2 were mainly easily reducible oxides. The Fe/N ratio is an important control on nitrate-reducing Fe(II) oxidation processes that occur both in the aquatic environment and in wastewater treatment systems. The response of nitrate reduction, Fe oxidation, and mineral production to different initial Fe/N molar ratios in the presence of Paracoccus denitrificans was investigated in 132 h incubation experiments. A decrease in the nitrate reduction rate at 12 h occurred as the Fe/N ratio increased. Accumulated nitrite concentration at Fe/N ratios of 2–10 peaked at 12–84 h, and then decreased continuously to less than 0.1 mmol/L at the end of incubation. N2O emission was promoted by high Fe/N ratios. Maximum production of N2 occurred at a Fe/N ratio of 6, in parallel with the highest mole proportion of N2 resulting from the reduction of nitrate (81.2%). XRD analysis and sequential extraction demonstrated that the main Fe minerals obtained from Fe(II) oxidation were easily reducible oxides such as ferrihydrite (at Fe/N ratios of 1–2), and easily reducible oxides and reducible oxides (at Fe/N ratios of 3–10). The results suggest that Fe/N ratio potentially plays a critical role in regulating N2, N2O emissions and Fe mineral formation in nitrate-reducing Fe(II) oxidation processes.  相似文献   
109.
Metal oxide nanoparticles like hydrated ferric oxide (HFO) or hydrated zirconium oxide (HZrO) are excellent sorbents for environmentally significant ligands like phosphate, arsenic, or fluoride, present at trace concentrations. Since the sorption capacity is surface dependent for HFO and HZrO, nanoscale sizes offer significant enhancement in performance. However, due to their miniscule sizes, low attrition resistance, and poor durability they are unable to be used in typical plug-flow column setups. Meanwhile ion exchange resins, which have no specific affinity toward anionic ligands, are durable and chemically stable. By impregnating metal oxide nanoparticles inside a polymer support, with or without functional groups, a hybrid nanosorbent material (HNM) can be prepared. A HNM is durable, mechanically strong, and chemically stable. The functional groups of the polymeric support will affect the overall removal efficiency of the ligands exerted by the Donnan Membrane Effect. For example, the removal of arsenic by HFO or the removal of fluoride by HZrO is enhanced by using anion exchange resins. The HNM can be precisely tuned to remove one type of contaminant over another type. Also, the physical morphology of the support material, spherical bead versus ion exchange fiber, has a significant effect on kinetics of sorption and desorption. HNMs also possess dual sorption sites and are capable of removing multiple contaminants, namely, arsenate and perchlorate, concurrently.  相似文献   
110.
Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu(II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg·L−1 or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号