首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   12篇
  国内免费   104篇
安全科学   14篇
废物处理   11篇
环保管理   3篇
综合类   114篇
基础理论   59篇
污染及防治   44篇
评价与监测   5篇
灾害及防治   1篇
  2024年   2篇
  2023年   5篇
  2022年   5篇
  2021年   12篇
  2020年   9篇
  2019年   14篇
  2018年   9篇
  2017年   11篇
  2016年   17篇
  2015年   18篇
  2014年   21篇
  2013年   25篇
  2012年   20篇
  2011年   24篇
  2010年   12篇
  2009年   17篇
  2008年   12篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
排序方式: 共有251条查询结果,搜索用时 281 毫秒
111.
碳纳米管电极电还原降解水中头孢他啶   总被引:1,自引:0,他引:1  
朱宏  胡翔  李俊峰 《环境科学》2013,34(8):3125-3131
通过SEM、FITR、CV、Tafel等表征,以头孢他啶为目标污染物,研究了自制多壁碳纳米管电极电还原难降解有机物等的特性,并用高效液相色谱检测反应后目标污染物的质量浓度.结果表明,该电极性能稳定,可耐受一定程度的腐蚀,具有较好的性能.循环伏安结果表明,在800 mV左右获得较大的氧化峰,峰值达到-0.2 mA,头孢他啶在该电极上的降解是不可逆的.碳纳米管电极电还原降解头孢他啶的适宜工艺条件为:电极间距1 cm,电压15 V,初始质量浓度1 mg·L-1,离子强度1 g·L-1,pH=6.0.此条件下,反应60 min,头孢他啶的去除效率可达90%以上,该降解过程为二级反应.  相似文献   
112.
为发展废水中双酚A(BPA)的处理技术和保护水环境安全,采用“电沉积-热分解”法制备负载多壁碳纳米管(MWCNTs)的多孔Ti/SnO2-Sb-Ni电极,研究了电极对BPA的去除能力、动力学特征和矿化效率,初步分析了BPA的降解途径.结果表明,当浸渍液中n(Sn)∶n(Sb)∶n(Ni)为100∶10∶1、ρ(MWCNTs)为0.8g·L-1时,制备的电极对BPA的去除效果最好;负载MWCNTs使得电极表面的晶体尺寸更小,可增大电极的比表面积,为电催化反应提供更多的活性位点,进而提高电极的电催化效率.当c(Na2SO4)为10mmol·L-1、反应液初始pH为5和电流密度为50 mA·cm-2时,对50 mg·L-1的BPA降解60 min时去除效率达到99.76%;去除过程符合一级反应动力学方程,速率常数为0.096 min-1;电解120 min时,TOC去除率达到67.01%.采用液相色谱-串联质谱分析法(...  相似文献   
113.
以腐殖酸(Humic Acid,HA)为研究对象,采用多壁碳纳米管(Multiwalled Carbon Nanotubes,MWCNTs)对聚偏氟乙烯(Polyvinylidene Fluoride,PVDF)平板超滤膜进行预涂覆改性处理,并与等量MWCNTs分散状态时吸附处理HA对膜污染的缓解效果进行了对比,考察了MWCNTs在处理HA过程中缓解膜污染的机制.同时,分析了MWCNTs投量和溶液离子变化对MWCNTs吸附及截留作用缓解膜污染的影响.结果表明,MWCNTs预涂覆与吸附相比,能够更有效地缓解膜污染,其中,分散剂为乙醇的MWCNTs预涂覆层对膜污染的缓解效果最好.增加MWCNTs投量不能无限地提高其对HA的吸附及截留效果;添加Na~+会造成MWCNTs对HA的吸附及截留效果变差;添加Ca~(2+)能够提高MWCNTs对HA的吸附及截留效果.膜表面污染照片及膜电镜观测结果表明,乙醇分散MWCNTs在超滤膜(UF)表面形成的预涂覆层呈均匀的层状结构,HA被拦截在MWCNTs层的多孔结构内,不易进入PVDF膜膜孔,反洗时易脱附,可逆性高;纯水分散MWCNTs在超滤膜表面形成的预涂覆层易于团聚,HA容易透过MWCNTs涂覆层进而堵塞PVDF膜膜孔,可逆性低;MWCNTs预吸附处理后形成MWCNTs和HA的包裹体,不经微滤膜滤除,会在PVDF膜表面产生复合污染.  相似文献   
114.
采用共沉淀法对混酸氧化的多壁碳纳米管(MWCNTs)进行磁化,形成了Fe3O4/MWCNTs磁性复合材料(MMWCNTs).研究了酸化时间对MMWCNTs制备及其吸附水中菲性能的影响.结果表明:弱酸条件下吸附效果较好,MMWCNTs对水中菲的吸附在30min内快速上升,到60min时基本达到平衡,吸附过程符合准二级动力学模型.MMWCNTs对水中菲的饱和吸附量随酸化时间增加呈现先升高后降低的趋势.酸化7h后制备的MMWCNTs的饱和吸附量最大,达到17.56μg/mg.  相似文献   
115.
采用一步溶剂热的方法成功制备了微量多壁碳纳米管(MWCNT)修饰的溴氧化铋(BiOBr)复合材料,实现了对盐酸四环素(TC)的高效稳定降解.在MWCNT添加量为0.01mg(0.001wt%)时,制得的MWCNT/BiOBr催化剂具有较低的光致发光强度、较大的光电流和较小的EIS弧,显著提高了光催化效率.性能的显著提高是由于MWCNT的高捕获电子能力,它不仅能增强光吸收,而且还加速了电荷载流子的分离.通过自由基捕获实验和电子自旋共振(ESR)确定其主要活性组分为·O2-,并提出了提高复合材料光催化活性的可能机理.  相似文献   
116.
极性有机物一体化采样器(POCIS)是一种富集检测水体中极性有机化合物的被动采样技术,能够比较客观地反映某段时间内水体中污染物的时间加权平均浓度。该研究利用多壁碳纳米管(MWCNT)作为POCIS采样器的吸附材料,探讨了不同水环境条件下MWCNT-POCIS采样器对6种典型抗生素采样速率(RS)的影响。结果表明:水流流速是影响RS的主要因素,盐度和溶解性有机质对RS影响不显著。将MWCNT-POCIS采样器应用于水体中抗生素浓度的监测,并与传统的主动采样方法进行对比,发现MWCNTPOCIS采样器测定的抗生素浓度与主动采样测定的浓度基本一致。  相似文献   
117.
为实现水中酰胺醇类抗生素氟苯尼考(FF)的高效降解,本研究设计了一种以碳纳米管(CNT)膜为阳极的穿透式电化学降解系统.采用真空过滤法制备CNT导电膜(CNT-CM),考察了流速、电压、电解质种类及浓度、初始pH值和FF初始浓度等因素对CNT-CM降解氟苯尼考的影响.结果表明,以CNT-CM为阳极的穿透式电化学系统对FF表现出良好的降解性能,流速、电压等对FF的去除具有显著影响.当停留时间为1.1 min(进水流速为2.5 mL·min-1),电压为3 V,对pH为3~10、初始浓度为0.05~10 mg·L-1的FF废水的平均去除率均可达97%以上.自由基淬灭实验表明,在Na2SO4体系中,CNT-CM降解FF主要通过直接氧化和·OH介导的间接氧化实现,在NaCl体系中,主要通过直接氧化作用和电极生成的活性氯实现.  相似文献   
118.
Fenton改性多壁碳纳米管对亚甲基蓝的吸附性能研究   总被引:3,自引:2,他引:1       下载免费PDF全文
崔春月  马东  郑庆柱 《中国环境科学》2011,31(12):1972-1976
通过催化裂解法制备多壁碳纳米管,利用Fenton试剂对多壁碳纳米管改性,研究了Fenton改性对多壁碳纳米管表面物理化学特性的影响和对亚甲基蓝的吸附特性.投射电镜(TEM)、比表面积(BET)分析表明,Fenton改性多壁碳纳米管纯度高,孔隙均匀,外径为30nm左右,比表面积为120m2/g;且表面引入了大量含氧基团,等电点为1.8.未改性和Fenton改性多壁碳纳米管对亚甲基蓝的吸附动力学均符合Langergren模型,其平衡吸附量分别为24.5,36.4mg/g;吸附等温线均符合Freundlich模型,未改性和Fenton改性多壁碳纳米管的kF分别为7.92和25.37;温度和pH值升高均有利于Fenton改性多壁碳纳米管对亚甲基蓝的吸附.  相似文献   
119.
碳纳米材料在环境中的转化   总被引:1,自引:0,他引:1  
张礼文  黄庆国  毛亮 《环境化学》2013,(7):1268-1276
碳纳米材料主要包括富勒烯、碳纳米管和石墨烯.随着碳纳米材料的研究和应用范围不断扩大,其对环境的影响和在环境中的行为也逐渐受到关注,而在环境中的转化是环境行为的一个重要方面.首先,环境转化会改变碳纳米材料的性质,从而影响其它行为如聚集沉降和生态毒性.同时,作为一种以碳为骨架的材料,能否被自然界转化、从而进入碳循环是评价碳纳米材料长期环境影响的必要信息.因此,本文重点总结了碳纳米材料在自然环境条件和水处理条件下可能发生的生物或非生物转化,并分析影响碳纳米材料转化的因素,和转化过程对其环境行为的影响.  相似文献   
120.
王磊  刘娜  徐旭  张承东 《环境化学》2013,32(4):577-583
采用批量实验研究阿特拉津在3种多壁碳纳米管(MWNT、MWNT-COOH、MWNT-OH)上的吸附解吸行为,并对吸附态阿特拉津生物可利用性进行研究.研究结果表明,3种碳管对阿特拉津的吸附能力依次为:MWNT-COOH>MWNT-OH>MWNT,比表面积是决定吸附的主要因素,含氧官能团也是影响吸附的重要因素之一.阿特拉津可从3种碳管上完全解吸,无解吸滞后现象.体系中99.5%以上的阿特拉津能够被微生物(高效降解菌AD2)利用,但也存在微量残余且阿特拉津在MWNT上的微量残留最大,这与其孔隙吸附机制有关.碳管的存在影响微生物对阿特拉津的脱氯降解,脱氯产物仅达到54.26%—82.49%;具有高含量含氧官能团的MWNT-OH影响尤为显著,可能机制是碳管对微生物降解性能及中间产物的影响使得降解彻底性降低.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号