首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   0篇
  国内免费   45篇
安全科学   3篇
环保管理   10篇
综合类   77篇
基础理论   19篇
污染及防治   37篇
评价与监测   1篇
  2023年   7篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   9篇
  2014年   5篇
  2013年   12篇
  2012年   6篇
  2011年   10篇
  2010年   2篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   9篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
排序方式: 共有147条查询结果,搜索用时 703 毫秒
141.
将高压静电场除尘杀菌、活性炭吸附光催化分解等技术集成一体 , 开发高效空气净化技术和空气净化器,并进行污染物净化实验。结果表明,该集成技术对空气中颗粒物、二甲苯和甲醛等污染物均具有很高的净化效率;气态污染物净化时,初期以活性炭吸附为主,后期以光催化分解为主;活性炭吸附具有选择性,吸附二甲苯速度比甲醛快。  相似文献   
142.
Aluminosilicate clay mineral (ACM) is a kind of typical raw materials that used widely in manufacturing industry owing to the abundant reserve and low-cost exploring. In past two decades, in-depth understanding on unique layered structure and abundant surface properties endows ACM in the emerging research and application fields. In field of solar-chemical energy conversion, ACM has been widely used to support various semiconductor photocatalysts, forming the composites and achieving efficient conversion of reactants under sunlight irradiation. To date, classic ACM such as kaolinite and montmorillonite, loaded with semiconductor photocatalysts has been widely applied in photocatalysis. This review summaries the recent works on ACM-based composites in photocatalysis. Focusing on the properties of surface and layered structure, we elucidate the different features in the composition with various functional photocatalysts on two typical kinds of ACM, i.e., type 1:1 and type 2:1. Not only large surface area and active surface hydroxyl group assist the substrate adsorption, but also the layered structure provides more space to enlarge the application of ACM-based photocatalysts. Besides, we overview the modifications on ACM from both external surface and the inter-layer space that make the formation of composites more efficiently and boost the photo-chemical process. This review could inspire more upcoming design and synthesis for ACM-based photocatalysts, leading this kind of economic and eco-friendly materials for more practical application in the future.  相似文献   
143.
A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles(NPs)were produced through single-step pyrolysis of FeCl_3–Ti(OBu)_4 laden agar biomass under NH_3 environment.The physiochemical properties of composites were characterized thoroughly.It has found that heating temperature and N-doping through NH_3-ambiance pyrolysis significantly influence the visible-light sensitivity and bandgap energy of composites.The catalytic activities of composites were measured by degradation of Methylene Blue(MB)in the presence or absence of H_2O_2 and visible-light irradiation.Our best catalyst(N–TiO_2–Fe_3O_4-biochar)exhibits rapid and high MB removal competency(99.99%)via synergism of adsorption,photodegradation,and Fenton-like reaction.Continuous production of O_2U~-and UOH radicles performs MB degradation and mineralization,confirmed by scavenging experiments and degradation product analysis.The local trap state Ti~(3+),Fe_3O_4,and N-carbon of the catalyst acted as active sites.It has suggested that the Ti~(3+)and N-doped dense carbon layer improve charge separation and shuttle that prolonged photo-Fenton like reaction.Moreover,the catalyst is highly stable,collectible,and recyclable up to 5 cycles with high MB degradation efficiency.This work provides a new insight into the synthesis of highly visible-light sensitized biocharsupported photocatalyst through NH_3-ambiance pyrolysis of NPs-laden biomass.  相似文献   
144.
• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation. • It can be easily separated and collected from water in an external magnetic field. • BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%. • Hole (h+) and superoxide radical (O2) dominate RhB photo-decomposition process. • The reusability of this composite was confirmed by five successive recycling runs. Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.  相似文献   
145.
Photocatalysis has attracted worldwide attention due to its potential in solar energy conversion. As a “green” advanced oxidation technology, it has been extensively used for water disinfection and wastewater treatment. This article provides a review of the recent progress in solar energy-induced photocatalytic disinfection of bacteria, focusing on the development of highly efficient photocatalysts and their underlying mechanisms in bacterial inactivation. The photocatalysts are classified into TiO2-based and non-TiO2-based systems, as TiO2 is the most investigated photocatalyst. The synthesis methods, modification strategies, bacterial disinfection activities and mechanisms of different types of photocatalysts are reviewed in detail. Emphasis is given to the modified TiO2, including noble metal deposition, non-metal doping, dye sensitization and composite TiO2, along with typical non-TiO2-based photocatalysts for bacterial disinfection, including metal oxides, sulfides, bismuth metallates, graphene-based photocatalysts, carbon nitride-based photocatalysts and natural photocatalysts. A simple and versatile methodology by using a partition system combined with scavenging study is introduced to study the photocatalytic disinfection mechanisms in different photocatalytic systems. This review summarizes the current state of the work on photocatalytic disinfection of bacteria, and is expected to offer useful insights for the future development in the field.  相似文献   
146.
微波干燥制备Ag/TiO2的光催化活性试验研究   总被引:2,自引:0,他引:2  
利用钛酸丁酯溶胶—凝胶法制备TiO2凝胶,通过光化学沉积法在TiO2凝胶表面负载Ag,采用微波对凝胶进行干燥制备TiO2光催化剂。以甲基橙为模拟污染物进行光催化降解试验,结果表明该方法制备的Ag/TiO2催化剂光催化活性明显提高。  相似文献   
147.
• A novel Bi2WO6/CuS composite was fabricated by a facile solvothermal method. • This composite efficiently removed organic pollutants and Cr(VI) by photocatalysis. • The DOM could promoted synchronous removal of organic pollutants and Cr(VI). • This composite could be applied at a wide pH range in photocatalytic reactions. • Possible photocatalytic mechanisms of organic pollutants and Cr(VI) were proposed. A visible-light-driven Bi2WO6/CuS p-n heterojunction was fabricated using an easy solvothermal method. The Bi2WO6/CuS exhibited high photocatalytic activity in a mixed system containing rhodamine B (RhB), tetracycline hydrochloride (TCH), and Cr (VI) under natural conditions. Approximately 98.8% of the RhB (10 mg/L), 87.6% of the TCH (10 mg/L) and 95.1% of the Cr(VI) (15 mg/L) were simultaneously removed from a mixed solution within 105 min. The removal efficiencies of TCH and Cr(VI) increased by 12.9% and 20.4%, respectively, in the mixed solution, compared with the single solutions. This is mainly ascribed to the simultaneous consumption electrons and holes, which increases the amount of excited electrons/holes and enhances the separation efficiency of photogenerated electrons and holes. Bi2WO6/CuS can be applied over a wide pH range (2–6) with strong photocatalytic activity for RhB, TCH and Cr(VI). Coexisiting dissolved organic matter in the solution significantly promoted the removal of TCH (from 74.7% to 87.2%) and Cr(VI) (from 75.7% to 99.9%) because it accelerated the separation of electrons and holes by consuming holes as an electron acceptor. Removal mechanisms of RhB, TCH, and Cr(VI) were proposed, Bi2WO6/CuS was formed into a p-n heterojunction to efficiently separate and transfer photoelectrons and holes so as to drive photocatalytic reactions. Specifically, when reducing pollutants (e.g., TCH) and oxidizing pollutants (e.g., Cr(VI)) coexist in wastewater, the p-n heterojunction in Bi2WO6/CuS acts as a “bridge” to shorten the electron transport and thus simultaneously increase the removal efficiencies of both types of pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号