首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   5篇
  国内免费   16篇
废物处理   3篇
综合类   18篇
基础理论   2篇
污染及防治   11篇
  2020年   3篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2004年   2篇
排序方式: 共有34条查询结果,搜索用时 156 毫秒
21.
剩余污泥与废弃油脂混合厌氧消化产气缓滞因素研究   总被引:3,自引:1,他引:2  
王静  杨殿海 《环境科学学报》2012,32(5):1088-1094
通过完全混合式厌氧消化反应研究了底物中添加30%(以VS计)的厨余提取物,且底物与接种物的VS比为1.87时厌氧消化过程中产气迟滞的影响因素.结果表明,反应过程中氨氮含量小于500 mg·L-1时,游离氨对比甲烷累积产气率基本没有影响.挥发性脂肪酸(VFAs)的富集及反应器酸化是影响产气缓滞的直接因素,VFAs中乙酸的大量累积使得反应器酸化严重,pH降至6.4,产生了10~15 d的产气迟滞,之后随着VFAs的降解和碱度的缓冲,产气恢复正常.完全混合式反应器在各个阶段出现的不同污泥颗粒体现了反应进行的不同阶段和反应的酸化情况.  相似文献   
22.
木薯渣富含纤维素,是理想的沼气生产原料。由于木薯渣含水量大,颗粒分散,不易固态发酵,作为沼气生产原料需对其进行水解处理。不同的水解方式得到的水解液对后续酸化过程的产酸速率和酸分布都有很大影响。对经过酶处理和水热处理得到的木薯渣水解液进行了生物酸化处理。结果显示,与直接投加木薯渣相比,投加酶水解液、投加150℃水解液水解20min和150℃水解液水解45min后,反应器达到最大产酸量所需的时间由96h分别缩短至30,48和24h,最大产酸量由4558mg/L分别增加至5277,6209和4734mg/L,且3种水解液在酸化24h后挥发性脂肪酸(VFAs)均达到最优分布,其中乙酸和正丁酸之和占总VFAs的90%左右。根据产酸速度及酸分布情况得出,木薯渣最佳可溶化方法为150℃高温水解20min,后续生物水解酸化时间为24h。  相似文献   
23.
高负荷是升流式(Up-flow Anaerobic Sludge Bed, UASB)、内循环厌氧反应器(internal circulation, IC)和厌氧膜生物反应器(anaerobic membrane bioreactor, AnMBR)等厌氧生物反应器发展的趋势,也是实现"沼气升级(biogas upgrading)"的难点.挥发性有机酸(volatile fatty acids, VFAs)和溶解性无机碳(total inorganic carbon, TIC)既是厌氧消化必经的中间产物,又与氨氮等弱碱共同影响高负荷厌氧消化过程的pH变化,并决定着沼气中的甲烷含量.VFAs、TIC和氨氮构成的三元pH酸碱缓冲体系是高负荷厌氧消化"沼气升级"的关键操作条件.本文总结了高负荷厌氧消化过程中pH变化规律和影响,针对不同VFAs/氨氮关系的形成机制,分析了高负荷厌氧消化碳酸盐缓冲体系特征及其对沼气CH_4/CO_2构成的影响.以厌氧膜生物反应器为例,讨论了近年来基于pH在线监测和调控方法、理论模型方面的研究进展,同时对未来的重点研究方向提出展望,以期为今后的高负荷AnMBR研发提供参考.  相似文献   
24.
The releasing characteristics of phosphorus,nitrogen compounds,organics,and some metal cations during thermal treatment of excess sludge were investigated.It was found that during heating not only phosphorus,but also nitrogen compounds,organics,and some metal cations could be released in abundance.The maximum orthophosphate (ortho-P) release of about 90 mg/L in concentration was observed at 50℃in 1 h.Except for volatile fatty acids (VFAs),comparatively little total nitrogen (TN),total organic carbon (TOC),and metal cations were released at the same time.Such results might favor further process of phosphorus recovery.VFAs were considerably released only at 50℃.Acetic,butyric,and propionic acid were the most abundant components in turn and their releasing profiles exhibited good linear relationship with time (R~2=0.9977,0.9624,and 0.8908,respectively).The concentrations of Mg~(2 ) and K~ increased with time and temperature during thermal treatment,but Ca~(2 ) decreased.The release of Mg~(2 ) and K~ agreed well with TP release (R~2=0.9892 and 0.9476,respectively).Temperature in the experimental range had very little impact on the linear relationships, especially of Mg~(2 ).Moreover,the parameter of mixed liquor suspended solids (MLSS) was found to be an important factor for thermal sludge treatment as the released ortho-P and total phosphorus (TP) at 50℃increased more than one-fold when MLSS was increased from 4000 to 8000 mg/L.  相似文献   
25.
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.  相似文献   
26.
• Comprehensive mitigation of gas emissions from swine manure was investigated. • Additives addition for mitigation of gas from the manure has been developed. Sargassum horneri, seaweed masking strategy controlled gas by 90%-100%. • Immediate reduction in emitted gas and improving air quality has been determined. • Microbial consortium with seaweed completely controlled gas emissions by 100%. Gas emissions from swine farms have an impact on air quality in the Republic of Korea. Swine manure stored in deep pits for a long time is a major source of harmful gas emissions. Therefore, we evaluated the mitigation of emissions of ammonia (NH3), hydrogen sulfide (H2S) and amine gases from swine manure with biological products such as seaweed (Sargassum horneri) and a microbial consortium (Bacillus subtilis (1.2 × 109 CFU/mL), Thiobacillus sp. (1.0 × 1010 CFU/mL) and Saccharomyces cerevisiae (2.0 × 109 CFU/mL)) used as additives due to their promising benefits for nutrient cycling. Overall, seaweed powder masking over two days provided notable control of over 98%-100% of the gas emissions. Furthermore, significant control of gas emissions was especially pronounced when seaweed powder masking along with a microbial consortium was applied, resulting in a gas reduction rate of 100% for NH3, amines and H2S over 10 days of treatment. The results also suggested that seaweed powder masking and a microbial consortium used in combination to reduce the gas emissions from swine manure reduced odour compared with that observed when the two additives were used alone. Without the consortium, seaweed decreased total volatile fatty acid (VFA) production. The proposed novel method of masking with a microbial consortium is promising for mitigating hazardous gases, simple, and environmentally beneficial. More research is warranted to determine the mechanisms underlying the seaweed and substrate interactions.  相似文献   
27.
采用升流式厌氧污泥床(UASB)反应器,对增大进水浓度和增大进水流量过程中,颗粒污泥对丙酸和丁酸冲击负荷变化响应进行了研究。实验表明,进水浓度从2 000 mg COD/L提高到5 000 mg COD/L,丙酸去除率骤降,而丁酸降解相对稳定;在保持进水浓度为3 000 mg COD/L的条件下,增大进水流量,负荷从7.5 kg COD/(m3.d)升高到15 kg COD/(m3.d)时,丙酸降解率骤降,丁酸降解率仍然相对稳定。实验结果符合降解热力学理论和传统抑制动力学的未解离挥发性脂肪酸理论,并发现改变反应器运行条件能够加剧未解离酸的抑制作用。同时提出了探讨厌氧过程中丙酸积累导致厌氧反应器运行失败的基础理论原因。  相似文献   
28.
This study was a pen trial in which the effects of adding different rates of liquid aluminum chloride (AlCl3) on litter pH, total volatile fatty acids (VFAs), and ammonia (NH3) fluxes was evaluated. Liquid AlCl3 treatments used in this study were sprayed on the rice hull surface at rates of 100 g, 200 g, and 300 g liquid AlCl3/kg rice hulls; untreated rice hulls served as controls. Litter pH, total VFAs, and NH3 fluxes were all lowered (P< 0.05) by all of the liquid AlCl3 treatments compared with controls during certain times of the 5 week study. However, there were no significant differences among treatments on litter pH at the end of the study (from 3 to 5 weeks) or NH3 fluxes at beginning of the study (0 to 3 weeks). Total VFAs were reduced 16 %, 29 %, and 53 % by 100 g liquid AlCl3/kg rice hulls, 200 g liquid AlCl3/kg rice hulls, and 300 g liquid AlCl3/kg rice hulls, respectively. Liquid AlCl3additions reduced NH3 fluxes by 35 %, 57 % and 67 %, respectively, at the low, medium and high rates. In summary, these results indicate that adding liquid aluminum chloride to rice hulls would be a useful tool in reducing the negative environmental impact of poultry litter. It should be noted that the decreased VFA production and NH3 volatilization was chiefly associated with reduction in litter pH.  相似文献   
29.
酸碱联合调节剩余污泥过程中氮、磷和有机质的释放   总被引:1,自引:0,他引:1  
实现城市污泥的减量化和资源化是污水厂面临的难题之一。通过采用(1)先酸性(pH=3)后碱性(pH=10)、(2)先碱性(pH=10)后酸性(pH=3)的两段控制方式(每段反应8 d),同时做pH不调的对比实验,研究剩余污泥水解酸化过程中氨氮、磷酸盐和溶解性COD(SCOD)、碳水化合物、蛋白质和挥发性脂肪酸(VFAs)等有机质组分的释放。结果表明,酸碱联合调节有利于各组分的释放;氮和磷在酸性条件下的释放量大于碱性,有机质在碱性条件下的释放量大于酸性;采用(2)方式,调为酸性后反应1 d,氨氮的释放量即达到最大(17.28 mg/g TS);采用(1)的调节方式反应7 d,磷酸盐能达到最佳释放量(14.16 mg/g TS);总VFAs的产生受反应时间的影响较大,其余有机质组分在(2)的调节方式下,6 d左右即可达到较大释放量。  相似文献   
30.
Chen Z  Li Y  Wen Q  Zhang H 《Chemosphere》2011,82(8):1209-1213
The production of copolymers of poly-β-hydroxyalkanoates (PHA) is generally a high cost process. To reduce the production costs, inexpensive carbon sources such as volatile fatty acids (VFAs) from acidified wastewater can be used. Therefore, isolation of bacterial strains that can produce PHA copolymers using VFAs as a sole carbon source would be a beneficial alternative. In this study, a strain of PHA accumulating bacterium was isolated from the wastewater treatment plant of a soybean processing facility in Harbin. The strain was identified as γ-proteobacterium according to its 16S rDNA information and was originally named as strain WD-3. The strain accumulated a mass of PHA up to 45% of its dry cell weight when it was cultured under the optimum fermentation condition in this study when butyrate was used as the carbon source. In addition, WD-3 could synthesize PHA copolymers of poly-hydroxybutyrate and poly-hydroxyvalerate (PHV) either from C-even substrates or from C-odd substrates, and one-third of the copolymer was PHV. Results from this study demonstrated that small molecule organic acids can be used by the strain of WD-3 as the carbon source for growth and PHA production. The maximum PHA yield in the study was 0.45 g g−1 dry cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号