首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   3篇
  国内免费   24篇
废物处理   4篇
综合类   29篇
基础理论   7篇
污染及防治   10篇
评价与监测   9篇
社会与环境   2篇
  2023年   4篇
  2022年   6篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
41.
The metal tolerance and metabolic changes in Boehmeria nivea colonized in mining areas are not well known. A hydroponic experiment was conducted to evaluate the impact of antimony (Sb)+arsenic (As) in following combinations (control (no metal), 20+0, 10+10, 40+0, 20+20, and 40+40 mg/L) on phytotoxicity, metal tolerance index (MTI), and chlorophyll fluorescence in B. nivea. This constitutes an initial investigation of metal tolerance and chlorophyll fluorescence in Sb and Sb+As contaminated B. nivea. The high Sb+As 40+40 mg/L produced significant phytotoxicity and MTI in the plant. Progressive higher Sb and Sb+As levels resulted in decreased chlorophyll fluorescence of B. nivea. Exposure to intermediate and high Sb+As levels induced damage in the photosynthesis apparatus of the plant.  相似文献   
42.
石墨炉原子吸收分光光度法测定地表水中的锑   总被引:1,自引:0,他引:1  
采用石墨炉原子吸收分光光度法测定地表水中的锑,优化了仪器测量参数,讨论了干扰离子的干扰。方法在0μg/L~100μg/L范围内线性良好,检出限为0.9μg/L,平行测定的RSD为1.3%~9.8%,加标回收率为97.9%~104%,标准样品的测定结果符合要求。  相似文献   
43.
Antimony is more than an emerging pollutant in water but a scare resource. In this study, we report an adsorbent with the record capacity so far from the balanced view of Sb(III) and Sb(V). The composite adsorbent was fabricated by encapsulating hollow Fe3O4 nanosphere with the EDTA grafted chitosan, and it has superhigh adsorption capacity of for 657.1 mg/g for Sb(III) and 467.3 mg/g for Sb(V), respectively. The mechanism study reveals that the adsorption of Sb initializes from the Fe3O4, propagates along the chitosan with hydrogen bond, and terminates at the inner sphere complex with the EDTA moiety in the adsorbent. In view of the ultra-high adsorption capacity of the adsorbent, the recovered adsorbent that contains abundant (>36.4%) highly dispersed antimony nanoparticles (600-FCSE-Sb) is applied to Li-ion battery anode after reduction. This article provides a new idea for connecting water treatment and electric energy storage.  相似文献   
44.
Antimony (Sb) is a toxic and carcinogenic element that often enters soil in the form of antimony trioxide (Sb2O3) and coexists with manganese (Mn) in weakly alkaline conditions. Mn oxides such as birnessite have been found to promote the oxidative dissolution of Sb2O3, but few researches concerned the co-transformations of Sb2O3 and Mn(II) in environment. This study investigated the mutual effect of abiotic oxidation of Mn(II) and the coupled oxidative dissolution of Sb2O3. The influencing factors, such as Mn(II) concentrations, pH and oxygen were also discussed. Furthermore, their co-transformed mechanism was also explored based on the analysis of Mn(II) oxidation products with or without Sb2O3 using XRD, SEM and XPS. The results showed that the oxidative dissolution of Sb2O3 was enhanced under higher pH and higher Mn(II) loadings. With a lower Mn(II) concentration such as 0.01 mmol/L Mn(II) at pH 9.0, the improved dissolution of Sb2O3 was attributed to the generation of dissolved intermediate Mn(III) species with strong oxidation capacity. However, under higher Mn(II) concentrations, both amorphous Mn(III) oxides and intermediate Mn(III) species were responsible for promoting the oxidative dissolution of Sb2O3. Most released Sb (∼72%) was immobilized by Mn oxides and Sb(V) was dominant in the adsorbed and dissolved total Sb. Meanwhile, the presence of Sb2O3 not only inhibited the removal of Mn(II) by reducing Mn(III) to Mn(II) but also affected the final products of Mn oxides. For example, amorphous Mn oxides were formed instead of crystalline Mn(III) oxides, such as MnOOH. Furthermore, rhodochrosite (MnCO3) was formed with the high Mn(II)/Sb2O3 ratio, but without being observed in the low Mn(II)/Sb2O3 ratio. The results of study could help provide more understanding about the fate of Sb in the environment and the redox transformation of Mn.  相似文献   
45.
Antimony(Sb) is a toxic metalloid, and its pollution has become a global environmental problem as a result of its extensive use and corresponding Sb-mining activities. The toxicity and mobility of Sb strongly depend on its chemical speciation. In this review, we summarize the current knowledge on the biogeochemical processes(including emission, distribution,speciation, redox, metabolism and toxicity) that trigger the mobilization and transformation of Sb from pollution sources to the surrounding environment. Natural phenomena such as weathering, biological activity and volcanic activity, together with anthropogenic inputs, are responsible for the emission of Sb into the environment. Sb emitted in the environment can adsorb and undergo redox reactions on organic or inorganic environmental media, thus changing its existing form and exerting toxic effects on the ecosystem. This review is based on a careful and systematic collection of the latest papers during 2010–2017 and our research results, and it illustrates the fate and ecological effects of Sb in the environment.  相似文献   
46.
Knowledge of trace element concentrations and mobility is important in the ecotoxicological assessment of contaminated soils. We analysed soil pore water under field conditions to provide new insights into the mobility of residual contaminants in the surface 50cm of a highly contaminated woodland soil. Cadmium and Zn were highly mobile in the acidic soil, concentrations increasing with depth in soil pore water, showing considerable downward mobility. High levels of surface organic matter restricted the solubility of Cu, Pb and Sb, with highest concentrations being found close to the surface. Dissolved organic carbon in pore water had a strong influence on mobility of Cu, Zn, Pb and Sb. Elevated As had moved from the organic surface horizons but was largely immobilised in deeper layers and associated with Fe and Al oxides. The measured differential mobility of pollutants in the present study is highly relevant to protection of groundwater and other receptors.  相似文献   
47.
Sb(Ⅲ) is often detected in contaminated soil and groundwater. Hence, high-efficiency technology is needed. In this study, bimetallic organic frameworks were used for the first time to immobilize Sb(Ⅲ) from contaminated soil and groundwater. The materials were synthesized by the hydrothermal method. Both ends of the prepared material were hexagonal tip rods,and the length became shorter as the ratio of Fe/Mg decreased. The bimetallic organic framework with a Fe/Mg feeding ratio of 0.5 was the opt...  相似文献   
48.
An investigation of the distribution, fractionation and phytoavailability of antimony (Sb) and other heavy metals in soil sampled at various locations in the vicinity of a Sb mine revealed elevated levels of Sb, most certainly due to the mining activities. The concentration of Sb in the soil samples was 100.6–5045 mg kg−1; in comparison, the maximum permissible concentration for Sb in soil in The Netherlands is 3.5 mg kg−1, and the maximum permissible concentration of pollutant Sb in receiving soils recommended by the World Health Organization is 36 mg kg−1. The soil sampled near the Sb mine areas had also contained high concentrations of As and Hg. Root and leaf samples from plants growing in the Sb mine area contained high concentrations of Sb, with the concentration of Sb in the leaves of radish positively correlating with Sb concentrations in soil. The distribution of Sb in the soil showed the following order: strongly bound to the crystalline matrix > adsorbed on Fe/Mn hydrous oxides, complexed to organic/sulfides, bound to carbonates > weakly bound and soluble. Solvents showed varying levels of effectiveness in extracting Sb (based on concentration) from the soil, with , in decreasing order. The concentration of easily phytoavailable Sb was high and varied from 2.5 to 13.2 mg kg−1, the percentage of moderately phytoavailable Sb ranged from 1.62 to 8.26%, and the not phytoavailable fraction represented 88.2–97.9% of total Sb in soils.  相似文献   
49.
A multiple-year inventory of atmospheric antimony (Sb) emissions from coal combustion in China for the period of 1980-2007 has been calculated for the first time. Specifically, the emission inventories of Sb from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. It shows that the total Sb emissions released from coal combustion in China have increased from 133.19 t in 1980 to 546.67 t in 2007, at an annually average growth rate of 5.4%. The antimony emissions are largely emitted by industrial sector and thermal power generation sector, contributing 53.6% and 26.9% of the totals, respectively. At provincial level, the distribution of Sb emissions shows significant variation. Between 2005 and 2007, provinces always rank at the top five largest Sb emissions are: Guizhou, Hunan, Hebei, Shandong, and Anhui.  相似文献   
50.
Antimony volatilization in municipal waste incineration was studied. Two municipal waste samples and antimony(III) oxide (Sb4O6) were heated to 500°C and 700°C in an air stream in a quartz furnace. The volatilization of Sb4O6 occurred more at 700°C that at 500°C. Conversely, antimony volatilization form municipal waste was stronger at 500°C than at 700°C. This implies that antimony from municipal waste is volatilized as chloride instead of oxide. The chlorine sources for antimony chlorination, a gas-phase reaction involving hydrochloric acid and a solid-phase reaction of inorganic chlorine, e.g., CaCl2, were compared. Only the solid-phase reaction could offer enough active chlorine to induce chlorination of antimony oxide. Received: July 2, 1998 / Accepted: January 28, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号