首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   28篇
  国内免费   84篇
安全科学   12篇
废物处理   10篇
环保管理   37篇
综合类   243篇
基础理论   23篇
污染及防治   83篇
评价与监测   72篇
社会与环境   14篇
  2023年   12篇
  2022年   13篇
  2021年   10篇
  2020年   19篇
  2019年   17篇
  2018年   16篇
  2017年   20篇
  2016年   21篇
  2015年   21篇
  2014年   27篇
  2013年   19篇
  2012年   33篇
  2011年   38篇
  2010年   16篇
  2009年   31篇
  2008年   29篇
  2007年   17篇
  2006年   16篇
  2005年   16篇
  2004年   8篇
  2003年   16篇
  2002年   7篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   7篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有494条查询结果,搜索用时 15 毫秒
41.
OHS风险控制方法在烟气排放控制工程中的应用   总被引:1,自引:0,他引:1  
介绍了烟气排放控制工程中OHS风险控制的方法,并以香港青山“B”电厂4X680MW机组排放控制工程(CPBEC)为例,阐述了目前国内外环保项目在OHS风险管理方面的差距和改进措施。  相似文献   
42.
There is increasing concern that agricultural intensification in China has greatly increased N2O emissions due to rapidly increased fertilizer use. By linking a spatial database of precipitation, synthetic fertilizer N input, cropping rotation and area via GIS, a precipitation-rectified emission factor of N2O for upland croplands and water regime-specific emission factors for irrigated rice paddies were adopted to estimate annual synthetic fertilizer N-induced direct N2O emissions (FIE-N2O) from Chinese croplands during 1980-2000. Annual FIE-N2O was estimated to be 115.7 Gg N2O-N year−1 in the 1980s and 210.5 Gg N2O-N year−1 in the 1990s, with an annual increasing rate of 9.14 Gg N2O-N year−1 over the period 1980-2000. Upland croplands contributed most to the national total of FIE-N2O, accounting for 79% in 1980 and 92% in 2000. Approximately 65% of the FIE-N2O emitted in eastern and southern central China.  相似文献   
43.
The European Union has defined environmental quality standards (EQSs) for surface waters for priority substances and several other pollutants. Furthermore national EQSs for several chemicals are valid in Austria. The study investigated the occurrence of these compounds in municipal wastewater treatment plant (WWTP) effluents. In a first screening of 15 WWTPs relevant substances were identified, which subsequently were monitored in 9 WWTPs over 1 year (every 2 months). Out of 77 substances or groups of substances (including more than 90 substances) 13 were identified as potentially relevant in respect to water pollution and subjected to the monitoring, whereas most other compounds were detected in concentrations far below the respective EQS for surface waters and therefore not further considered. The preselected 13 compounds for monitoring were cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), zinc (Zn), diuron, polybrominated diphenyl ethers (PBDEs), di(ethyl-hydroxyl)phthalate (DEHP), tributyltin compounds (TBT), nonylphenoles (NP), adsorbable organic halogens (AOX) and the complexing agents ethylenediaminetetraacetic acid (EDTA) as well as nitrilotriacetic acid (NTA). In the effluents of WWTPs the concentrations of the priority substances Cd, NP, TBT and diuron frequently exceeded the respective EQS, whereas the concentrations for DEHP and Ni were below the respective EQS. The effluent concentrations for AOX, EDTA, NTA, Cu, Se and Zn frequently are in the range or above the Austrian EQS for surface waters. Besides diuron and EDTA all compounds are removed at least partially during wastewater treatment and for most substances the removal via the excess sludge is the major removal pathway. For the 13 compounds which were monitored in WWTP effluents population equivalent specific discharges were calculated. Since for many compounds no or only few information is available, these population equivalent specific discharges can be used to assess emissions from municipal WWTPs to surface waters as well as to make a first assessment of the impact of a discharge on surface waters chemical status. Comparing discharges and river pollution on a load basis, the influence of diffuse sources becomes obvious and therefore should also be taken into consideration in river management.  相似文献   
44.
通过对2011年常州地区各类植物VOC排放因子,以及各类植被分布面积等数据统计分析,采用BEIS模型为参考的估算方法,建立起常州地区植被VOC的排放清单。结果表明,植被所排放VOC的变化规律既与植物本身有关又与气温和太阳辐射有关,区域内年植被VOC的总排放量为1.13×104 t。  相似文献   
45.
This paper describes a method of estimating emission fluxes of biogenic volatile organic compounds (BVOCs) based on the approach proposed by Guenther et al. (1995) and the high-resolution Corine land-cover 2000 database (1 × 1 km resolution). The computed emission fluxes for the Czech Republic (selected for analysis as being representative of a heavily cultivated, central European country) are compared with anthropogenic emissions, both for the entire country and for individual administrative regions. In some regions, BVOC emissions are as high as anthropogenic emissions; however, in most regions the BVOC emissions are approximately 50% of the anthropogenic emissions. The yearly course of BVOC emissions (represented by monoterpenes and isoprene) is presented, along with the spatial distribution of annual mean values. Differences in emission distributions during winter (January) and summer (June) are also considered.  相似文献   
46.
Background, aims, and scope  Since toxaphene (polychlorocamphene, polychloropinene, or strobane) mixtures were applied for massive insecticide use in the 1960s to replace the use of DDT, some of their congeners have been found at high latitudes far away from the usage areas. Especially polychlorinated bornanes have demonstrated dominating congeners transported by air up to the Arctic areas. Environmental fate modeling has been applied to monitor this phenomenon using parallel zones of atmosphere around the globe as interconnected environments. These zones, shown in many meteorological maps, however, may not be the best way to configure atmospheric transport in air trajectories. The latter could also be covered by connecting a chain of simple model boxes. We aim to study this alternative approach by modeling the trajectory chain using catchment boxes of our FATEMOD model. Polychlorobornanes analyzed in biota of the Barents Sea offered one case to study this modeling alternative, while toxaphene has been and partly still is used massively at southern East Europe and around rivers flowing to the Aral Sea. Materials and methods  Pure model substances of three polychlorobornanes (toxaphene congeners P26, P50, and P62) were synthesized, their environmentally important thermal properties measured by differential scanning calorimetry, as evaluated from literature data, and their temperature dependences estimated by the QSPR programs VPLEST, WATSOLU, and TDLKOW. The evaluated property parameters were used to model their atmospheric long-range transport from toxaphene heavy usage areas in Ukraine and Aral/SyrDarja/AmuDarja region areas, through East Europe and Northern Norway (Finnmarken) to the Barents Sea. The time period used for the emission model was June 1997. Usual weather conditions in June were applied in the model, which was constructed by chaining FATEMOD model boxes of the catchment’s areas along assumed maximal air flow trajectories. Analysis of the three chlorobornanes in toxaphene mixtures function as a basis for the estimates of emission levels caused by its usage. High estimate (A) was taken from contents in a Western product chlorocamphene and low estimate (B) from mean contents in Russian polychloroterpene products to achieve modeled water concentrations. Bioaccumulation to analyzed lipid of aquatic biota at the target region was estimated by using statistical calculation for persistent organic pollutants in literature. Results  The results from model runs A and B (high and low emission estimate) for levels in sea biota were compared to analysis results of samples taken in August 1997 at Barents Sea. The model results (ng g−1 lw): 4–95 in lipid of planktovores and 7–150 in lipid of piscivores, were in fair agreement with the analysis results from August 1997: 21–31 in Themisto libellula (chatka), 26–42 in Boreocadus saida (Polar cod), and 5–27 in Gadus morhua (cod) liver. Discussion  The modeling results indicate that the application of chained simple multimedia catchment boxes on predicted trajectory is a useful method for estimation of volatile airborne persistent chemical exposures to biota in remote areas. For hazard assessment of these pollutants, their properties, especially temperature dependences, must be estimated by a reasonable accuracy. That can be achieved by using measurements in laboratory with pure model compounds and estimation of properties by thermodynamic QSPR methods. The property parameters can be validated by comparing their values at an environmental temperature range with measured or QSPR-estimated values derived by independent methods. The chained box method used for long-range air transport modeling can be more suitable than global parallel zones modeling used earlier, provided that the main airflow trajectories and properties of transported pollutants are predictable enough. Conclusions  Long-range air transport modeling of persistent, especially photo-resistant organic compounds using a chain of joint simple boxes of catchment’s environments is a feasible method to predict concentrations of pollutants at the target area. This is justified from model results compared with analytical measurements in Barents Sea biota in August 1997: three of six modeled values were high and the other three low compared to the analysis results. The order of magnitude level was similar in both modeled (planktovore and piscivore) and observed (chatka and polar cod) values of lipid samples. The obtained results were too limited to firm validation but are sufficient to justify feasibility of the method, which prompts one to perform more studies on this modeling system. Recommendations and perspectives  For assessment of the risk of environmental damages, chemical fate determination is an essential tool for chemical control, e.g., for EU following the REACH rules. The present conclusion of applicability of the chained single-box multimedia modeling can be validated by further studies using analyses of emissions and target biota in various other cases. To achieve useful results, fate models built with databases having automatic steps for most calculations and outputs accessible to all chemical control professionals are essential. Our FATEMOD program catchments at environments and compound properties listed in the database represent a feasible tool for local, regional, and, according our present test results, for global exposure predictions. As an extended use of model, emission estimates can be achieved by reversed modeling from analysis results of samples corresponding to the target area. This article is dedicated to the memory of Professor Alexander B Terentiev (who passed away in November 2006), our true friend. With his Institute of Organo-Element Compounds, Russian Academy of Science, Moscow, he was an important main organizer of the six joint Finnish–Russian seminars (every third year since 1989) on the field (‘Chemistry and Ecology of Organo-Element Compounds’). He prompted us especially to search properties and environmental fates for various polyhalogen compounds. We remember him for his friendly character and great sense of humor.  相似文献   
47.
Acid rain in Asia   总被引:3,自引:0,他引:3  
Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.  相似文献   
48.
49.
An air quality sampling program was designed and implemented to collect the baseline concentrations of respirable suspended particulates (RSP = PM10), non-respirable suspended particulates (NRSP) and fine suspended particulates (FSP = PM2.5). Over a three-week period, a 24-h average concentrations were calculated from the samples collected at an industrial site in Southern Delhi and compared to datasets collected in Satna by Envirotech Limited, Okhla, Delhi in order to establish the characteristic difference in emission patterns. PM2.5, PM10, and total suspended particulates (TSP) concentrations at Satna were 20.5 ± 6.0, 102.1 ± 41.1, and 387.6 ± 222.4 μg m−3 and at Delhi were 126.7 ± 28.6, 268.6 ± 39.1, and 687.7 ± 117.4 μg m−3. Values at Delhi were well above the standard limit for 24-h PM2.5 United States National Ambient Air Quality Standards (USNAAQS; 65 μg m−3), while values at Satna were under the standard limit. Results were compared with various worldwide studies. These comparisons suggest an immediate need for the promulgation of new PM2.5 standards. The position of PM10 in Delhi is drastic and needs an immediate attention. PM10 levels at Delhi were also well above the standard limit for 24-h PM10 National Ambient Air Quality Standards (NAAQS; 150 μg m−3), while levels at Satna remained under the standard limit. PM2.5/PM10 values were also calculated to determine PM2.5 contribution. At Satna, PM2.5 contribution to PM10 was only 20% compared to 47% in Delhi. TSP values at Delhi were well above, while TSP values at Satna were under, the standard limit for 24-h TSP NAAQS (500 μg m−3). At Satna, the PM10 contribution to TSP was only 26% compared to 39% in Delhi. The correlation between PM10, PM2.5, and TSP were also calculated in order to gain an insight to their sources. Both in Satna and in Delhi, none of the sources was dominant a varied pattern of emissions was obtained, showing the presence of heterogeneous emission density and that nonrespirable suspended particulate (NRSP) formed the greatest part of the particulate load.  相似文献   
50.
Human impacts on methane emission from mangrove ecosystems in India   总被引:4,自引:0,他引:4  
This study deals with the emission of methane in relation to changing environmental conditions and human impact, in three mangrove ecosystems of south India. Time-varying fluxes of methane adopting the close chamber technique were used to estimate CH4 emission from an unpolluted site (Pichavaram mangroves) and two polluted sites viz. (1) Ennore Creek mangroves (affected by fertilizer effluents and crude oil discharges) and (2) Adyar estuary mangroves (affected by the discharges of organic and industrial wastes), covering monthly and seasonal variations. The results indicate annual average CH4 emissions of 7.4, 5.02 and 15.4 mg m−2 h−1 from the sediment–water interface of the Pichavaram, Ennore Creek and Adyar estuary respectively. Emission characteristics obtained at Pichavaram mangroves represent a natural variability with changing physico-chemical factors, whereas the emission characteristics at Ennore Creek and Adyar estuary mangroves show anthropogenic influence. Several environmental factors such as oxygen availability, organic matter, soil physical and chemical properties, in addition to human-mediated interventions have been identified as influencing emission rates in the mangrove ecosystems. Preliminary CH4 emission estimates for the mangrove ecosystems along the Indian sub- continent and the tropical and subtropical coastline of the world by linear extrapolation based on surface area range from 0.05 to 0.37 and 2.8 to 19.25 Tg CH4 year−1 respectively. Our results also highlight the impact of human activities on future emission of methane from the mangrove ecosystems. Received: 3 March 1999 / Accepted: 14 September 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号