首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   6篇
  国内免费   8篇
安全科学   1篇
废物处理   2篇
环保管理   13篇
综合类   55篇
基础理论   10篇
污染及防治   29篇
评价与监测   20篇
社会与环境   6篇
灾害及防治   14篇
  2023年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   3篇
  2012年   7篇
  2011年   9篇
  2010年   5篇
  2009年   11篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1995年   5篇
  1994年   10篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1982年   1篇
排序方式: 共有150条查询结果,搜索用时 31 毫秒
41.
ABSTRACT: The 18-year precipitation record from the dense gage network on the Reynolds Creek Experimental Watershed located in southwest Idaho was used to determine the spatial distribution of annual and monthly precipitation on a mountainous watershed. Analyses of these data showed a linear relationship between annual amounts and elevation. This relationship was best when the gages were grouped into downwind and upwind sites. This grouping was appropriate because most of the winter storms moved over the watershed from the west and southwest, and the heaviest precipitation was on the west (downwind) side of the watershed. Gage sites along the western and southern watershed borders were most representative of the upwind gages on the east side, because they measured the precipitation from the air moving upwind onto the watershed. The maximum annual precipitation on the watershed was just leeward of the western watershed boundary. The monthly precipitation and elevation relationship was also best represented by grouping the gage sites into upwind and downwind sites. However, during the summer when there are only small amounts of pre cipitation and thunderstorms are the source of most precipitation, one equation can be used to represent the elevation relationship. This study also showed that the log-normal distribution could be used to generate the annual synthetic series, and the cube-root-normal distribution could be used to generate monthly synthetic series for all locations on the watershed.  相似文献   
42.
Strongly acidic wastewater produced in nonferrous metal smelting industries often contains high concentrations of Ni(II), which is a valuable metal. In this study, the precipitation of Ni(II) from strongly acidic wastewater using sodium dimethyldithiocarbamate (DDTC) as the precipitant was evaluated. The effects of various factors on precipitation were investigated, and the precipitation mechanism was also identified. Finally, the nickel in the precipitates was recovered following a pyrometallurgical method. The results show that, under optimised conditions (DDTC:Ni(II) molar ratio = 4:1; temperature = 25 °C), the Ni(II) removal efficiency reached 99.3% after 10 min. In strongly acidic wastewater, the dithiocarbamate group of DDTC can react with Ni(II) to form DDTCNi precipitates. Further recovery experiments revealed that high-purity NiO can be obtained by the calcination of DDTCNi precipitates, with the nickel recovery efficiency reaching 98.2%. The gas released during the calcination process was composed of NO2, CS2, H2O, CO2, and SO2. These results provide a basis for an effective Ni(II) recovery method from strongly acidic wastewater.  相似文献   
43.
Airborne ammonia and ammonium within the Northern Adriatic area, Croatia   总被引:1,自引:0,他引:1  
Determination of airborne ammonia started in the early 1980s, as a part of air pollution monitoring of industrial plants. Due to high emissions, the city of Rijeka was one of the most polluted in Croatia in the mid-1980s. Considerable reductions in SO2 and NO(x) emissions led to lower airborne levels of these pollutants in the mid 1990s. In spite of the coke plant closure in 1994, there was only a weak decline in airborne ammonia over the period 1980--2005, with annual means in the range of 12-20 microg m(-3) at urban Site 1 and 6-28 microg m(-3) at suburban Site 2. Similar behaviour has been observed with ammonium in bulk rainwater samples since 1996. Higher and approximately equal deposition of nitrogen as ammonium (N-NH4+) were obtained for the urban Site 1 and the mountainous Site 4, but with different causative facts. Ammonium's contribution to total nitrogen (NO3(-)+NH4+) deposition is approximately two thirds, even for a remote Site 3.  相似文献   
44.

Background, aim, and scope

Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated.

Approach

We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries.
  • Have climate change and land-use change increased erosion and sediment loads in rivers?
  • Do we have indications of an increase in riverbed clogging?
  • Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging?
  • Results

    Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish.

    Discussion

    Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades.

    Conclusions

    Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor.

    Recommendations and perspectives

    Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.  相似文献   
    45.
    Sampling and physico-chemical analysis of precipitation: a review   总被引:2,自引:0,他引:2  
    Wet deposition is one of two processes governing the transfer of beneficial and toxic chemicals from the atmosphere on to surfaces. Since the early 1970s, numerous investigators have sampled and analyzed precipitation for their chemical constituents, in the context of "acidic rain" and related atmospheric processes. Since then, significant advances have been made in our understanding of how to sample rain, cloud and fog water to preserve their physico-chemical integrity prior to analyses. Since the 1970s large-scale precipitation sampling networks have been in operation to broadly address regional and multi-regional issues. However, in examining the results from such efforts at a site-specific level, concerns have been raised about the accuracy and precision of the information gathered. There is mounting evidence to demonstrate the instability of precipitation samples (e.g. with N species) that have been subjected to prolonged ambient or field conditions. At the present time precipitation sampling procedures allow unrefrigerated or refrigerated collection of wet deposition from individual events, sequential fractions within events, in situ continuous chemical analyses in the field and even sampling of single or individual rain, cloud and fog droplets. Similarly analytical procedures of precipitation composition have advanced from time-consuming methods to rapid and simultaneous analyses of major anions and cations, from bulk samples to single droplets. For example, analytical techniques have evolved from colorimetry to ion chromatography to capillary electrophoresis. Overall, these advances allow a better understanding of heterogeneous reactions and atmospheric pollutant scavenging processes by precipitation. In addition, from an environmental perspective, these advances allow better quantification of semi-labile (e.g. NH4+, frequently its deposition values are underestimated) or labile species [e.g. S (IV)] in precipitation and measurements of toxic chemicals such as Hg and PCBs (polychlorinated biphenyls). Similarly, methods now exist for source-receptor studies, using for example, the characterization of reduced elemental states and/or the use of stable isotopes in precipitation as tracers. Future studies on the relationship between atmospheric deposition and environmental impacts must exploit these advances. This review provides a comprehensive and comparative treatment of the state of the art sampling methods of precipitation and its physico-chemical analysis.  相似文献   
    46.
    Lu Y  Huang Y  Zou J  Zheng X 《Chemosphere》2006,65(11):1915-1924
    Fertilized agricultural soils are a major anthropogenic source of atmospheric N2O. A credible national inventory of agricultural N2O emission would benefit its global strength estimate. We compiled a worldwide database of N2O emissions from fertilized fields that were consecutively measured for more than or close to one year. Both nitrogen input (N) and precipitation (P) were found to be largely responsible for temporal and spatial variabilities in annual N2O fluxes (N2O–N). Thus, we established an empirical model (N2O–N = 1.49 P + 0.0186 P · N), in which both emission factor and background emission for N2O were rectified by precipitation. In this model, annual N2O emission consists of a background emission of 1.49 P and a fertilizer-induced emission of 0.0186 P · N. We used this model to develop a spatial inventory at the 10 × 10 km scale of direct N2O emissions from agriculture in China. N2O emissions from rice paddies were separately quantified using a cropping-specific emission factor. Annual fertilizer-induced N2O emissions amounted to 198.89 Gg N2O–N in 1997, consisting of 18.50 Gg N2O–N from rice paddies and 180.39 Gg N2O–N from fertilized uplands. Annual background emissions and total emissions of N2O from agriculture were estimated to be 92.78 Gg N2O–N and 291.67 Gg N2O–N, respectively. The annual direct N2O emission accounted for 0.92% of the applied N with an uncertainty of 29%. The highest N2O fluxes occurred in East China as compared with the least fluxes in West China.  相似文献   
    47.
    粉煤灰处理煤矿酸性废水的研究   总被引:7,自引:0,他引:7  
    采用石灰石中和沉淀,粉煤灰吸附处理煤矿酸性废水,取得了良好的效果。用石灰石调节pH至4.5,再用石灰中和至中性,并用粉煤灰吸附,粉煤灰用量为10g/L时处理效果较好。  相似文献   
    48.
    通过对区域近年来的降水监测数据的收集、整理和分析,探求区域降水特点及主要成因。  相似文献   
    49.
    根据近10年1077个降水样品监测结果,进行统计分析,阐明了宜昌市存在酸雨污染,且日趋严重的趋势。从大气污染、气象、地形等因素方面初步探讨了该市酸雨的成因。  相似文献   
    50.
    降水中与pH值有关的离子优选和pH值的PPR预测   总被引:3,自引:0,他引:3  
    应用投影寻踪回归(PPR)分析技术的SMART算法得到因子的权重序列,可实现对降水中与酸性pH值有关的离子的优选。实例分析结果表明,用优选出的离子作为特征因子,建立pH值的投影寻踪回归预测模型,具有较高的预测精度和较好的稳定性  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号